

Light driven release of acids for technological applications

PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia

website: www.unipv.it/photogreenlab

PhotoAcid Generators (PAGs): Compounds able to release acid upon light absorption

Applications:

J. Photochem. Photobiol. C **2007**, *8*, 157-173

x

R²

Sci. Rep. 2015, 5, 9941

J. Org. Chem. 2008, 73, 4602-4607

Aryl sulfonates as non-ionic PAGs

New PAGs based on simple molecules

Applications in polymerization and photolithography

Photochem. Photobiol. Sci. **2011**, 10, 123-127

Aryl tosylates as non-ionic PAGs

RSC Adv. **2015**, *5*, 33239-33248.

Synthesis of N-arylmethanesulfonimides

 $\lambda_{MAX} = 250-310 \text{ nm}$

- Irradiation (254 nm, 4 Hg lamps 15 W)
- Determination/Quantification photoproducts (GC-FID; HPLC)
- Acidity released (potentiometric titration with NaOH 0.1 M)
- Determination/Quantification acid species (ion exchange HPLC)

Photoacid Generators (PAGs)

Non-ionic PAGs

Ionic PAGs

J. Photochem. Photobiol. C 2007, 8, 157-173.

Compound	$\lambda_{max} [nm], \ \epsilon [M^{-1} cm^{-1}]$	λ_{em} , $\Phi_F imes 10^{-2}$	_
$1 (FG = NMe_2, R = CH_3)$	273, 26988 305, 3771	364, 1.42	
2 (FG = OMe, R = CH ₃)	233, 16260 272, 2249	298, 1.15	FG I
3 (FG = tBu , R = CH ₃)	222, 14894 254, 3342	283, 0.29	
4 (FG = H, R = CH ₃)	210, 8493 262, 621	283, 0.21	O, Ì, O
5 (FG = CN, $R = CH_3$)	232, 18730 274, 1509	298, 12.0	R´`O O R
6 (FG = Ac, $R = CH_3$)	242, 14061 288, 2498	-	
7 (FG = NO_2 , R = CH_3)	214, 6084 260, 11513	-	
13 (FG = Ac, R = $CH_3C_6H_4$)	240, 32496	-	
14 (FG = Ac, $R = CF_3$)	239, 18151 280, 1655	-	

Photochemistry (deaerated 0.01 M solutions):

a 4-methanesulfonylaniline was found in a 9% yield.

^b 4-methanesulfonylaniline was found in a 4% yield.

Chem. Eur. J. **2016**, *22*, 16998-17005.

Mechanism:

Chem. Eur. J. 2016, 22, 16998-17005

Photochemistry (oxygenated 0.01 M solutions):

Laser flash photolysis experiments:

Chem. Eur. J. 2016, 22, 16998-17005

Photochemistry of other N-arylsulfonimides (0.01 M):

Chem. Eur. J. **2016**, *22*, 16998-17005

N-aryltrifluoromethanesulfonimides aromatics:

64%

58%

73%

85%

59%

MeO

Chem. Commun. 2018, 54, 4144-4147.

for trifluoromethylation

of

Trifluoromethylation of aromatics: sunlight irradiation and flow conditions.

Chem. Commun. 2018, 54, 4144-4147.

Application: photolithography

Photopolymerization experiments

Wavenumber (cm-1)	3387	3060	3000	1255	1156	1092	945
Vibrational mode	OH stretching	Epoxide CH stretching	Epoxide CH stretching	C-0 (epoxide) asymmetric stretching	C-O-C asymmetric stretching	Si-O-Si asymmetric stretching	Si-OH stretching

Peaks decrease after UV exposure \Rightarrow ring opening reaction Degree of polymeriyation up to 90% (similar to DPST)

ChemistrySelect 2017, 2, 3633-3636.

Photopolymerization experiments

- UV irradiation for 1-3 min (Hg-Xe UV spot light source)
- Features resolutions between 10 and 100 μm can be achieved for compound 6 (development in EtOH/aqueous HCl 1:1 for 15-60 sec)

ChemistrySelect 2017, 2, 3633-3636.

Application: contact **EUV** photolithography

EUV (10-100 nm) lithography: better spatial resolution

- Low pressure xenon Discharge Produced Plasma source (10-20 nm)
- Masks with gold patterns on a silicon nitride membrane
- Spatial resolution <u>down to 100 nm</u>
- Patterns obtained with a 5 mJ/cm² EUV dose

ChemPhotoChem **2018**, *2*, 425-432.

Application: contact **EUV** nanolithography

ChemPhotoChem **2018**, *2*, 425-432.

Conclusions:

- Aryl tosylates are good simple PAGs for the release of *p*-toluenesulfonic acid.
- *N*-arylsulfonimides are excellent PAGs, releasing very high amount of sulfonic acids (up to 200% yield) and behaving as photolithographic initiators.
- Perfluoroaryl sulfonates are very good initiators for EUV lithography.
- Photoacid generators as phototriggers for redox reactions.

Perspectives:

- Development of PAGs for EUV based on *N*-arylsulfonimides.
- Development of visible light sensitive PAGs.