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The lowest Temperature
T = 4x1019K
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The lowest manmade temperature
FIND A WORLD RECORD 0

achieved so far is 450 picokelvin.
leanhardt @

It was achieved by a team of
scientists at the Massachusetts
Enter keywords separated by a space
e.g., pogo stick, longest fingemails

Institute of Technologu in
Cambridge, Massachusetts, USA:
A.E. Leanhardt, T.A. Pasquini,
M. Saba, A. Schirotzek, Y. Shin,
D. Kielpinski, D.E. Pritchard and
W. Ketterle. The results were {
published in Science magazine on
FAQ @ September 12, 2003.
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Why do we need extremely low temperatures to reach Bose-
Einstein condensation in atomic gases ?

At low temperatures the motion of atoms is governed by the
laws of quantum mechanics.
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When one decreases temperature the
thermal wave length becomes larger and
larger and eventually comparable to the
Interatomic distance.

Atoms behave like waves
and loose their identity




Nature divides elementary particles into two main
classes

- Fermions (electrons, neutons, protons, atoms with
odd number of fermions, like He3)

- Bosoni (photons, atoms with even number of
fermions, like hydrogen, He4 ..)




At low temperatures quantum mechanics predicts
a new phenomenon exhibited by bosons

Bose-Einstein Condensation (1924-1925)
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What is Bose-Einstein condensation (BEC)?

High
. l — Temperature T:
f \ thermal velocity v
density d3
N '\hb\d*r X" "Billiard balls"

Low
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AdB=h/mv o T-1/2
IZ \/L‘ J\‘\I 2 "Wave packets"

T=Tgrit:
Bose-Einstein
Condensation

Aag=d
"Matter wave overlap"

T=0:
Pure Bose
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"Giant matter wave"

W. Ketterle



Bose-Einstein condensation in atomic gases has been a long
sought goal for decades before 1995.

At low temperature all the systems existing in nature (with
the exception of liquid Helium) undergo a transition to the
crystal phase.

Atomic gases are not available in equilibrium at T=0

Atomic gases at T ~ 0 are fortunately available in
conditions of metastable equilibrium if their density Is
sufficiently small to avoid crystallization.

This sets severe conditions for density ( 108 -10%cm™)
and hence for temperaure (10° -10°K)




* How can we realize such low temperatures
and reach BEC ?

« What are the new important features
exhibited by Bose-Einstein condensates ?




To realize BEC in atomic gases we need:

The great technological challenges
of modern atomic physics !!




Experimental device used to realize BEC (JILA)




One of the first images revealing
Bose-Einstein condensation (JILA 1995)
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Below a certain temperature a macroscopic fraction
of atoms occupies the same single particle states
(Bose-Einstein condensate)




1997 NOBEL PRIZE IN PHYSICS

"for development of methods to cool
and trap atoms with laser light"'

Steven Chu Claude o o
Cohen-Tannoudji William D. Phillips



2001 NOBEL PRIZE IN PHYSICS

""for the achievement of Bose-Einstein
condensation in dilute gases of alkali atoms”

..’

Eric Cornell Wolfgang Ketterle Carl Wieman



After the first realization of Bose-Einstein
condensation in alkali atoms in 1995 the
experimental and theoretical activity in ultracold
atomic gases has become a well established
fleld of research of fundamental interest for the
Investigation of qguantum phenomena and
Involves thousands of researchers around the
world.

In Italy Bose-Einstein condensation is presently
realized in Florence, Pisa and Trento
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* How can we realize stich low temperatures
and reach BEC ?

« What are the new important features
exhibited by Bose-Einstein condensates ?
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2003
(JILA-ENS-
Innsbruck)

BEC of molecules
emerging from Fermi sea
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BEC of molecules
emerging from Fermi sea
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Vortices in a Fermi superfluid
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of quantum defects




2013
(Trento)

Kibble Zurek generation
of quantum defects

2014
(ETH Zurich)

Conductance G (1/h)

Quantized
conductance in
atomic Fermi gases

! L L .
0.0 0.5 1.0 1.5 20
Gate potential V;, (uK)



B Soliton defects born 2013

o of phase transitions

(Trento)

Kibble Zurek generation
of quantum defects

2014 (Technion)
(ETH Zurich)

Hawking radiation in BECs

Conductance G (1/h)

Quantized
conductance in
atomic Fermi gases

L L L L
0.0 0.5 1.0 1.5 2.0
Gate potential V;; (1K)



Q _ioj
‘ ‘ ‘ D?e | ‘

J—1 i j+1

real dimension ¥ —

2016
(Florence)

Synthetic
dimensions with
spin-orbit coupling

uolsuawip
onayuAs



OREZEEE
2016
(Florence)
Synthetic 2016
dimensions with
spin-orbit coupling (Stuttgart)
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in dipolar BECs




‘eee00

§ggpﬁm§ 4b]@:‘§
dosee

t (ms)

2019
(Pisa, Stuggart,
Innsbruck)

Supersolidity
In dipolar BECs

(Pisa, Stuggart,
Innsbruck)

Goldstone modes
In supersolids




(

- Dovo e

000600

<o e
5., 8 2.8 4'8 1(l)0

t (ms)

2019
(Pisa, Stuggart,
Innsbruck)

Supersolidity
in dipolar BECs

(Pisa, Stuggart,
Innsbruck)

Goldstone modes
In supersolids

A

. 091
\j
™
Z 08t

;7L BEC

0.
B

=

2020

(Trento, Pisa)

Superfluidity of a
supersolid dipolar

gas




Synthetic gauge fields:
New horizons of atomic physics




Atoms are neutral objects and are not sensitive to
Lorentz force which in charged systems is at the basis of
Important many-body phenomena (ex: Quantum Hall effect)

It is now possible to create artificial gauge fields which
simulate in neutral systems the effect of a magnetic field on
a charged particle

For a useful review see

Jean Dalibard:
Introduction to the physics of artifical gauge fields

[Proceedings of the International School of Physics "Enrico Fermi" of
July 2014, "Quantum matter at ultralow temperatures”]




In the presence of a magnetic field the kinetic energy of a
charged particle can be written as

= A\ 2
g _ (P—€A)
2m

Where p Is canonical momentum operator. In the case of a
uniform magnetic field oriented along the z-direction one has

A, =Bx,A =A =0 (Landau gauge)

Can we produce
similar Hamiltonians employing
neutral atoms and explore the
effects at the many-body level ?










IMPORTANT PERSPECTIVES

Supersolidity with spin-orbit coupling

Synthetic dimensions

Synthetic gauge fields in Fermi gases

Non Abelian gauge fields (Rashba Hamiltonian)
Simulation of lattice gauge theories

novel topological properties of quantum matter
etc..







