Optimizing dissolution dynamic nuclear polarization to perform *in vivo* hyperpolarized NMR

Arnaud Comment
Studying energy metabolism *in vivo* via 13C NMR

- Thermally polarized 13C studies following 13C-labelled substrates injection
- Only the most concentrated amino acids (e.g. glutamate, glutamine and aspartate in the brain) can be detected *in vivo*

13C metabolic studies

Glycolysis

Pyruvate

Lactate

Glutamine

Glutamate

Acetyl-carnitine

CoA

Acetyl-CoA

2-oxoglutarate

Citrate

Malate

Fumarate

TCA cycle

Bicarbonate
How to get the highest possible SNR

• **#1: Hyperpolarization**
 • Obtain the highest polarization possible in the polarizer

• **#2: Optimized acquisition**
 • Use highly-sensitive coils
 • Develop optimal MR sequence

• **#2’: High-order shimming and decoupling!**

Ex-situ technique: sample spend non-negligible time outside of an MR magnet

• **#3: Nearly lossless sample transfer**
 • Fast transfer
 • Quickly remove paramagnetic impurities (radicals, Gd,...)
 • Long-lived states
DNP by solid effect

- Energy balance: $h(v_e - v_n) + h\nu_n = h\nu_e$
Principles of DNP

- Homogeneous distribution of polarizing agents
- Optimal conditions for efficient polarization transfer: \(~1\) K, 3-5T
- 1 polarizing agent per 1000 nuclei (20-50mM)
- Microwaves to force polarization transfer (electron-nucleus dipolar interaction & spin diffusion)

Trityl stable radical
Thermodynamic description of solid effect

- Short $T_{1,e}$ and long $T_{1,n}$ required
Thermodynamic description of thermal mixing

Dynamic cooling of electron spins (Redfield, 1955):
All electron spins acquire a single spin temperature

Thermal mixing: all nuclear spins reach the same spin temperature than the electron spins

- Short $T_{2,e}, T_{1,e}$ and long $T_{1,n}, T_{1,d}$ required
Lower temperature and increase field

- Numerical solutions of Borghini model (thermal mixing)

- Experimental results match theoretical predictions

- New challenge: increasing the field to 7T (200 GHz)

Going to higher field

- 3M [1-13C]acetate in 2:1 D\textsubscript{2}O:d\textsubscript{6}-ethanol with 50mM TEMPOL
Going to higher field: Issues and strategies

- Microwave losses: corrugated waveguide at 1K?
 Currently testing prototype from SwissTo12

- Trityl @4.6T: 70% ($T_{\text{build}} \sim 6000$)

- Cross-polarization
- Adapt sample recipes
- Multi-sample DNP polarizer
 S. Hu et al., MRI, in press

Is the polarization time a real issue?

H. Jóhannesson, S. Macholl, and J. H. Ardenkjaer-Larsen
JMR 197, 167 (2009)
How to get the highest possible SNR

1. **Hyperpolarization**
 - Obtain the highest polarization possible in the polarizer

2. **Optimized acquisition**
 - Use highly-sensitive coils
 - Develop optimal MR sequence

2’. **High-order shimming and decoupling!**

Ex-situ technique: sample spend non-negligible time outside of an MR magnet

3. **Nearly lossless sample transfer**
 - Fast transfer
 - Long-lived states
 - Quickly remove paramagnetic impurities (radicals, Gd,...)
RF coils

- Detection with quadrature ^{13}C surface coil
- Excitation with ^{13}C volume coil

L. Darrasse and J.-C. Ginefri
Biochimie 85, 915 (2003)
Pulse sequences

Several important developments led to the optimization of the use of the available magnetization (UCSF, Toronto, Weizmann, Freiburg, Malmö and Tübingen)

- Fast chemical shift imaging sequences
- Compressed sensing
- Frequency-selective excitation pulses
- Spatial-spectral selective excitation
- *In vivo* 13C-1H polarization transfer?

\sim90% losses because of short T$_2$ *
How to get the highest possible SNR

- **#1: Hyperpolarization**
 - Obtain the highest polarization possible in the polarizer

- **#2: Optimized acquisition**
 - Use highly-sensitive coils
 - Develop optimal MR sequence

- **#2’: High-order shimming and decoupling!**

Ex-situ technique: sample spend non-negligible time outside of an MR magnet

- **#3: Nearly lossless sample transfer**
 - Fast transfer
 - Quickly remove paramagnetic impurities (radicals, Gd,...)
 - Long-lived states
A DNP protocol for *in vivo* studies

- Custom-designed polarizer
 - 5T / 1K
- 9.4T shielded MRI scanner

4.5 M 13C acetate
33 mM TEMPO D_2O
: d_6EtOD 2:1

DNP polarization (1 to 2 hr)
DNP protocol for *in vivo* studies

- 9.4T shielded MRI scanner
- Custom-designed polarizer 5T / 1K

Rapid dissolution and transfer (3 s)

Hot D$_2$O vapor
DNP protocol for \textit{in vivo} studies

Custom-designed polarizer 5T / 1K

9.4T shielded MRI scanner

4m

Automatic infusion (9 s)

2.2 ml 0.3 M 13C acetate

A. Comment
DNP protocol for *in vivo* studies

- Custom-designed polarizer
 5T / 1K

- 9.4T shielded MRI scanner

- MR measurements (up to 1 min)
DNP protocol for in vivo studies

Custom-designed polarizer 5T / 1K

9.4T shielded MRI scanner

4m

Detection in separator (1s)

Shim set for separator

Change shim set during infusion (9s)

In vivo acquisition

A. Comment
DNP protocol for in vivo studies

Infusion pump

- Compatible with high magnetic field (9.4 T)
- Operated automatically
- Separate gas from hyperpolarized solution
- Optical safety device checks for the potential presence of gas at the infusion port

Three consecutive 13C NMR measurements

- Three consecutive single-shot low flip angle 13C measurements during metabolic study without affecting the experimental timing

T. Cheng, M. Mishkovsky, O. Ouari, P. Hautle, P. Tordo, B. van den Brandt, A. Comment, *NMR Biomed* 2013
Low-field relaxation can be very short

- ^{13}C relaxation via scalar coupling to ^{14}N
- $[5^{-13}\text{C}]$glutamine (E. Kubala, GE Healthcare)

- $[1^{-13}\text{C}]$urea (J. Kurhanewicz, UCSF)
Magnetic field and temperature variations

![Graph showing magnetic field and temperature variations.](image)

- **Static magnetic field** $B_0(T)$
- **Time** (s)
- **Temperature** (K)

Key events:
- **Dissolution**
- **Transfer**
Scavenging radicals in infusion pump

![Graph showing polarization loss in infusion pump](graph.png)

- Polarization loss due to transfer: ~10%
- Polarization loss avoided by scavenging TEMPO: ~9%
- $T_1 = 73\text{s}$
- $T_1 = 32\text{s}$
Scavenging radicals in infusion pump

- Large amount of Vitamin C is required to have fast scavenging
- Large amount of vitamin C leads to reduced T₁
Thermoresponsive spin-labeled hydrogel

MW irradiation

\[\Delta T \]

1-13C-butanol polarized by SL-hydrogel
\[T_1 = 112 \pm 2 \text{s} \]

1-13C-butanol polarized by TEMPO
\[T_1 = 29 \pm 0.1 \text{s} \]

Non-degassed tert-butanol
\[T_1 = 83.5 \pm 2.5 \text{s} \]

Degassed tert-butanol
\[T_1 = 114.5 \pm 6 \text{s} \]
In-line filtering process

- BDPA has similar efficiency as trityls to polarize 13C

L. Lumata et al., Chemistry 17 (2011)
How to get the highest possible SNR

- **#1: Hyperpolarization**
 - Obtain the highest polarization possible in the polarizer

- **#2: Optimized acquisition**
 - Use highly-sensitive coils
 - Develop optimal MR sequence

- **#2’: High-order shimming and decoupling!**

Ex-situ technique: sample spend non-negligible time outside of an MR magnet

- **#3: Nearly lossless sample transfer**
 - Fast transfer
 - Quickly remove paramagnetic impurities (radicals, Gd,...)
 - Long-lived states
Real-time *in vivo* metabolism in mouse brain

Y. Takado, T. Cheng, M. Mishkovsky, A. Comment, R. Gruetter, *ISMRM 2012*
In vivo real-time formation of 2-oxoglutarate

- Additional resonance peak at 182.05 ppm
- DNP combined with high field & high order shimming
 \[\Rightarrow \text{increased sensitivity and high resolution in vivo spectra} \]
Homonuclear polarization transfer

2\(^{13}\)C Acetate Detection

\[
\begin{align*}
\text{H} & \quad \text{C}^{13} \quad \text{C}^{13} \\
\text{H} & \quad \text{CO} \\
\end{align*}
\]

Localized homonuclear transfer sequence

\[
\begin{align*}
\text{\(^{13}\)C} & \quad \text{OVS} \\
\text{\(^{1}H\)} & \quad \text{DECOUPLING} \\
\text{G}_r & \quad \text{OVS} \\
\end{align*}
\]

Fully adiabatic pulse sequences
Polarization transfer is carried out in a single voxel

M. Mishkovsky et al., MRM 68, 349 (2012)
In vivo spectrum after polarization transfer

- Detection of TCA cycle intermediate in the brain
- Double constraint for metabolite assignment: C(1) and C(2)
In vivo Brain Metabolism – TCA cycle

- First observation of in vivo TCA cycle intermediate in brain
- Observation of 2OG and lack of Glu signal implies that transport across the inner mitochondria membrane is rate limiting in the brain

M. Mishkovsky, A. Comment, R.Gruetter
Acetate heart metabolism

- Metabolism in the heart is fast
- Acquisition synchronized with respiration and blood pressure

- Formation of acetyl-carnitine is significantly reduced in ischemic muscle and in particular in the myocardium
1-13C pyruvate cardiac metabolism

- Possible to monitor the pH using the Bicarbonate to CO2 ratio
- Transformation of pyruvate into acetyl-CoA via PDH flux is strongly reduced in fasted animals (switch to fatty acid metabolism)
How to get the highest possible SNR

• **#1: Hyperpolarization**
 - Obtain the highest polarization possible in the polarizer

• **#2: Optimized acquisition**
 - Use highly-sensitive coils
 - Develop optimal MR sequence

• **#2’: High-order shimming and decoupling!**

Ex-situ technique: sample spend non-negligible time outside of an MR magnet

• **#3: Nearly lossless sample transfer**
 - Fast transfer
 - Quickly remove paramagnetic impurities (radicals, Gd,...)
 - Long-lived states
Acetate skeletal muscle metabolism

- Monitoring the real-time conversion of acetate to acetyl carnitine *in vivo* in muscle

Model to deduce kinetics

\[
\frac{dM_A}{dt} = -R_{1,A} [M_A - M_{A,eq}] - kM_A
\]

\[
\frac{dM_C}{dt} = kM_A - R_{1,C} [M_C - M_{C,eq}]
\]

- Only 2 free parameters: \(R_{1,A} \) and \(k \)

\[
M_A(t) = A_0 (\cos \theta)^t / TR e^{(-k-R_{1,A})t}
\]

\[
M_C(t) = A_0 (\cos \theta)^t / TR \left(b e^{(-k-R_{1,A})t} - be^{-R_{1,C}t} \right)
\]

\[
b = \frac{k}{-k - R_{1,A} + R_{1,C}}
\]
Molecular imaging by MRI

- Many brain pathologies are associated with disruption of the blood brain barrier

\[\text{In vivo detection of sub-\text{\(\mu\)M}} \]
concentration of Gd-DOTP in a rat head using hyperpolarized \(^6\text{Li}\)

\[
\frac{1}{\tau_{\text{CA}}} = \frac{1}{\tau_{\text{pure}}} + r_1 [\text{CA}] \quad \text{with } r_1 = 11 \text{ mM}^{-1}\text{s}^{-1}
\]

\[\Rightarrow [\text{CA}] = 820 \pm 300 \text{ nM} \]

- **Strategy**: combining \(T_1\)-relaxing contrast agents and hyperpolarized substances
In vivo hyperpolarized 89Y studies

Pros:
- 100% natural abundance
- *in vitro* T_1 up to about 500 s
- large chemical-shift range
- FDA-approved contrast agents such as Gd(DOTA)$^-$

Cons:
- gyromagnetic ratio very small
 (\sim20 times smaller than 1H)

In vivo pH imaging using hyperpolarized 89Y

- Ligands leading to pH-sensitive chemical shift

- Dissolution with ascorbate to scavenge nitroxy radical

Hyperpolarized ^{129}Xe via DNP

- Hyperpolarized ^{129}Xe: lung imaging, vascular and perfusion imaging, and potential use with biosensors
- Liquid xenon mixed with radical doped solvent
 \Rightarrow DNP \Rightarrow Sublimation \Rightarrow NMR

- Advantage of DNP over optical pumping method: large volumes can be produced in small amount of time

Encapsulated hyperpolarized 129Xe

Strategies for microbubble targeting

Conclusions

• SNR is everything! There is never too much

• Each 10% you gain can make a difference *in vivo*.

• 13C MR will never be as sensitive as 1H MR but:

 a) Contrast-to-noise is HUGE

 b) Hyperpolarized 13C MR gives access to a new time scale in terms of
 biochemistry

• A tentative number for the ultimate detection level for 13C metabolites
 is a few nmol (Boltzmann *in vivo* 13C NMR: 10mM in 1cm3)
Acknowledgments and funding

Albeda Research Aps
Valby, Denmark
Mathilde Lerche
Magnus Karlsson

Rolf Gruetter
Paul Tordo
Olivier Ouari
Matthew Merritt
Zoltán Kovács
Craig Malloy
Dean Sherry

http://sdnpi.epfl.ch