

Femtosecond-laser micromachining of transparent materials: an enabling tool for physics on a chip *Roberto Osellame*

INSTITUTE FOR PHOTONICS AND NANOTECHNOLOGIES (IFN)

ITALIAN NATIONAL RESEARCH COUNCIL (CNR)

MILAN - ITALY

Nobel Prize in Physics 2018

Outline

 Introduction to femtosecond laser micromachining of transparent materials

- Optical manipulation of particles
 - Optical cell stretcher and sorter
 - Integrated rheometer
- Quantum Supremacy
 - Boson Sampling
 - Quantum device validation

Femtosecond laser micromachining (FLM)

- Nonlinear absorption of femtosecond laser pulses → structural modifications
- Devices can be fabricated by translation of the sample

Waveguide writing in glass

Microfluidic channel fabrication in glass

Two-Photon Polymerization

Femtosecond laser pulses are focused inside a UV photosensitive resin.

Two-photon

polymerization

Polymerized region

Photocurable film

Focused beam

Objective lens

Near-IR laser pulses undergo two-photon absorption

Single-photon

polymerization

Two-photon absorption:

- Absorption is proportional to the square of the intensity
- It's a process with a <u>threshold</u>

Resolution well below the diffraction limit

100nm

Two-Photon Polymerization

Optofluidic single-particle manipulation

Optical Stretcher: Principle

2 counter-propagating laser beams

not focused beams

cell suspension
flowing in between

How does it work?

 ✓ reflected and refracted light at the cell surface provide optical forces for TRAPPING and STRETCHING

J. Guck et al., Biophys. J., 88, 3689-3698 (2005)

Deformability of cell cytoskeleton is a reliable marker of the cell status

detect illnesses from a small amount of sample

Integrated Optical Stretcher: Concept

MAIN advantages:

➤ fine alignment

enhanced robustness

further on-chip
 functionalities
 (fluorescence and Raman
 analyses, cell sorting)

fs-Laser Microfabrication

Cell Optical Stretching

Cell: HL-60 leukemic white blood cells

Power of the laser = 5.5 W

Power per side at the channel = 618 mW

Step stimulus: 2 s - 4 s - 2 s

N. Bellini et al., Biomed. Opt. Express 3, 2658 (2012)

Integrated Optical Sorter

Ilaria Cristiani Paolo Minzioni

Integrated Optical Sorter

llaria Cristiani Paolo Minzioni

T. Yang et al., Lab Chip 15, 1262 (2015)

Microrheology: Optical shooting

Equation of motion $m\ddot{x} = F_0 - F_V$

Neglecting the inertial $F_O(x)$ contribution

Microrheology: Results

- Various standard netwonian fluids were measured at different temperatures.
- All the trajectories could be fitted using calculated F(x) and constant η
- Viscosities in agreement with the literature ones

From Newtonian to non-Newtonian fluids

Integrated Photonic Circuits for Boson Sampling Experiments

Prof. Fabio Sciarrino

The quantum computer revolution

French Advances / My Doctor Fired Me / Love App-tually

IT PROMISES TO SOLVE SOME OF HUMANITY'S MOST COMPLEX PROBLEMS. IT'S BACKED BY JEFF BEZOS, NASA AND THE CIA. EACH ONE COSTS \$10,000,000 AND OPERATES AT 459° BELOW ZERO. AND NOBODY KNOWS HOW IT ACTUALLY WORKS

THE INFINITY MACHINE

ScienceDaily Your source for the latest research news Mobile: (iPhone Android Web Follow: Sacebook Twitter Sacebook Google+ HEALTH PHYSICAL/TECH ENVIRONMENT SOCIETY/EDUCATION Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plar **Featured Research** from universities, journals, and other organizations The guantum revolution is a step closer: New way to run a guantum algorithm Date: September 11, 2014 Quantum computers promise a revolutionary increase in BBC O Sign in computational power FUTURE DISCOVER: Home Tech Science Health Columns Stunning infographics > IN ASSOCIATION WITH CODE RED | 16 May 2013 Why Google and the Pentagon want 'quantum computers' V Sharon Weinberger Science & Environment Technoloav

Basics: Qubits

Classical bits can be either o or 1

A quantum bit (qubit) is in a superposition state: $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ where $|\alpha|^2 + |\beta|^2 = 1$

A qubit can take advantage of peculiar properties of quantum mechanics (quantum interference, entanglement,...) to implement much faster algorithms

A **photonic qubit** is implemented by taking as quantum system **a single-photon** and encoding the information in one of its degrees of freedom

Factoring large numbers

- Factoring large numbers is believed to be a computationally hard problem
- All current cryptography is based on this assumption
- 1994 Peter Shor's proposed a quantum algorithm that could factor large numbers in polynomial time
- Demonstration of quantum supremacy by Shor

Boson Sampling Problem

 Scott Aaronson proposed a problem that could demonstrate quantum supremacy with resources close to what we already have:

Boson Sampling

Aaronson, S. & Arkhipov, A., In Proceedings of the 43rd annual ACM symposium on theory of computing, 333–342 (ACM Press, 2011)

Boson Sampling in a nutshell

Quantum supremacy at hand

Classical computer

Calculate the matrix permanent #P-complete (computationally very hard)

Repeat calculation $\binom{m}{n}$ times to estimate the output probability distribution

Sample from this distribution

Specialized photonic quantum computer

Quantum supremacy could be already achieved with 50 photons in a 1000 modes interferometer

Integrated Quantum Photonics

Practical implementations

Photonic Boson Sampling in a Tunable Circuit Matthew A. Broome *et al. Science* **339**, 794 (2013); DOI: 10.1126/science.1231440

Boson Sampling on a Photonic Chip Justin B. Spring *et al. Science* **339**, 798 (2013); DOI: 10.1126/science.1231692

LETTERS

PUBLISHED ONLINE: 12 MAY 2013 | DOI: 10.1038/NPHOTON.2013.102

photonics

Experimental boson sampling

Max Tillmann^{1,2}*, Borivoje Dakić¹, René Heilmann³, Stefan Nolte³, Alexander Szameit³ and Philip Walther^{1,2}*

nature photonics

PUBLISHED ONLINE: 26 MAY 2013 | DOI: 10.1038/NPHOTON.2013.112

Integrated multimode interferometers with arbitrary designs for photonic boson sampling

Andrea Crespi^{1,2}, Roberto Osellame^{1,2}*, Roberta Ramponi^{1,2}, Daniel J. Brod³, Ernesto F. Galvão³*, Nicolò Spagnolo⁴, Chiara Vitelli^{4,5}, Enrico Maiorino⁴, Paolo Mataloni⁴ and Fabio Sciarrino⁴*

Arbitrary transformation in a circuit

Experimental setup

A. Crespi et al., Nature Photonics 7, 545, 2013

Scaling up to 13 modes

N. Spagnolo et al., Nature Photonics 8, 615, 2014

Quantum validation of a Photonic computer

photonics

LETTERS PUBLISHED ONLINE: 22 JUNE 2014 | DOI: 10.1038/NPHOTON.2014.13

Experimental validation of photonic boson sampling

Nicolò Spagnolo¹, Chiara Vitelli^{1,2}, Marco Bentivegna¹, Daniel J. Brod³, Andrea Crespi^{4,5}, Fulvio Flamini¹, Sandro Giacomini¹, Giorgio Milani¹, Roberta Ramponi^{4,5}, Paolo Mataloni¹, Roberto Osellame^{4,5*}, Ernesto F. Galvão^{3*} and Fabio Sciarrino^{1*}

ARTICLE

UNICATIONS

Received 27 Jul 2015 | Accepted 14 Dec 2015 | Published 4 Feb 2016

DOI: 10.1038/ncomms10469 OPEN

Suppression law of quantum states in a 3D photonic fast Fourier transform chip

Andrea Crespi^{1,2}, Roberto Osellame^{1,2}, Roberta Ramponi^{1,2}, Marco Bentivegna³, Fulvio Flamini³, Nicolò Spagnolo³, Niko Viggianiello³, Luca Innocenti^{3,4}, Paolo Mataloni³ & Fabio Sciarrino³

Simple algorithms for validation

Tichy, M. C., Mayer, K., Buchleitner, A. & Molmer, K. Stringent and efficient assessment of Boson-Sampling devices. Phys. Rev. Lett. 113, 020502 (2014).

fs-laser writing of photonic circuits

³ 3D photonic circuit implementing a quantum Fast Fourier Transform

Quantum device characterization

Reconstruction of the unitary transformation of the devices, by measuring single-photon distributions and two-photon coincidences ($\lambda = 785$ nm).

Experiment validation

4 modes

- Two-photon states in different input states with cyclic symmetry are injected in the interferometers.
- Output events are recorded and violations of the suppression law are counted as a function of the delay between the photons.

V_{OBS} = N_{forbidden} / N_{tot}

8 modes

 Reducing the delay between the photons they become more indistinguishable: explanations with classical (distinguishable -D) particles or light in a mean-field (MF) state are progressively ruled out.

Next step for Quantum validation

Tuneable circuits are needed!

Reconfigurable photonic circuits Fabrication

- Photonic circuits are laser written, then a thin gold layer is deposited
- fs-laser ablation is used to define the thermal shifters

F. Flamini et al., Light Science & Applications 4, e354 (2015)

Reconfigurable photonic circuits Characterization

Suitably driving the surface resistors induces highly controllable phase shifts

Conclusions

- Femtosecond laser micromachining can produce both optical waveguides and microchannels, with excellent prototyping and 3D capabilities
- Application to integrated optofluidic devices and integrated quantum photonic circuits have been presented
- Several more applications can benefit from this powerful microfabrication technique

Follow us @fastgroup_ifn

Group Leader Roberto Osellame

Staff Researchers

Rebeca Martinez Vazquez Francesca Bragheri Andrea Crespi

Post-Docs

Giacomo Corrielli Tommaso Zandrini Airan Rodenas Petra Paiè

PhD students

Simone Atzeni Diogo Lopes Pereira Simone Piacentini Federico Sala

Fourier multi-port splitters

- For more than two ports, several non-equivalent balanced splitters exist.
- An extension of the HOM effect has been formalized for Fourier multiports.

Multi-port splitters can be decomposed in combinations of regular beamsplitters.

Reck et al. Phys. Rev. Lett. (1994); Carolan et al. Science (2015)

Tichy et al.

Mastering 3D circuits

Unique capability to fabricate waveguide circuits and arrays in three-dimensions.

Crespi et al. New J. Phys. 15, 013012 (2013). Corrielli et al. Nat. Commun. 4, 1555 (2013).

Device fabrication

FOOTPRINT OF THE CENTRAL PART OF THE INTERFEROMETERS (excluding fan-in and fan-out)
4-modes FFT: 50 μm x 50 μm x 9 mm
8-modes FFT: 95 μm x 95 μm x 15 mm

- Two different chips have been fabricated in borosilicate glass (EAGLE 2000 Corning).
- Waveguides yield single-mode behaviour at 785 nm wavelength.

Improved scalability

Reduction in the complexity of the circuits with respect to conventional planar implementations