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Nuclear reactions

Forces: electromagnetic, strong nuclear

Conservation laws, e.g., probability, energy, momentum

Some parameterizations

Accurate knowledge of initial state (nuclear structure)

Computing to evolve state forward in time

Uncertainty quantification
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Outline

What we do and don’t know about the strong nuclear force

EFT: organizing what we know, constraining what we don’t

EFT truncation errors from a Bayesian analysis: NN scattering

EFT for halo nuclei: universal formula for γ + AZ→A-1Z + n

Uncertainty quantification for fusion: 7Be(p,γ) at solar energies

Conclusion
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Potentials from particle exchange

At the sub-atomic level, forces generated by exchange of particles

Energy to “make” particle borrowed from vacuum: ΔE Δt ∼ ħ

Particle can travel at most a distance c Δt ∼ ħ/(mc) 

“Yukawa potential” (1935): 

Longest range forces generated by lightest particles

V (r) = � g2

4⇡

exp(�mcr
~ )

r
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The long and the short of hadron physics

Spectrum of QCD bound states

Now understood as consequence of 
QCD’s spontaneously broken chiral 
symmetry: pions are approximate 
Goldstone bosons of QCD

For probe energies ~a hundred MeV, 
simplifications of the rich QCD 
dynamics emerge: processes dominated 
by 𝜋s (and Δs)
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The long and the short of hadron physics

Spectrum of QCD bound states

Now understood as consequence of 
QCD’s spontaneously broken chiral 
symmetry: pions are approximate 
Goldstone bosons of QCD

For probe energies ~a hundred MeV, 
simplifications of the rich QCD 
dynamics emerge: processes dominated 
by 𝜋s (and Δs)

Pion exchange generates longest-range 
part of NN force 

But short-distance dynamics too π

M (MeV)

138
Δ 293

770
ρ
ω

939MN



The NN potential: a cartoon
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Long-range part generated 
by one-pion exchange

Intermediate ranges: 
multiple pion exchange

Short ranges: “other stuff” 
exchange

Needs to be parameterized, 
then fit to NN scattering 
data



Effective Field Theory
Simpler theory that reproduces results of full theory at long distances

Short-distance details irrelevant for long-distance (low-momentum) 
physics, e.g. multipole expansion

Expansion in ratio of physical scales: p/Λb=λb/r

Symmetries of underlying theory limit possibilities: all possible terms 
up to a given order present in EFT

Short distances: unknown coefficients at a given order in the 
expansion need to be determined. Symmetry relates their impact on 
different processes

Examples: standard model, chiral perturbation theory, Halo EFT



Effective Field Theory
Simpler theory that reproduces results of full theory at long distances

Short-distance details irrelevant for long-distance (low-momentum) 
physics, e.g. multipole expansion

Expansion in ratio of physical scales: p/Λb=λb/r

Symmetries of underlying theory limit possibilities: all possible terms 
up to a given order present in EFT

Short distances: unknown coefficients at a given order in the 
expansion need to be determined. Symmetry relates their impact on 
different processes

Examples: standard model, chiral perturbation theory, Halo EFT

Monet (1881)



Effective Field Theory
Simpler theory that reproduces results of full theory at long distances

Short-distance details irrelevant for long-distance (low-momentum) 
physics, e.g. multipole expansion

Expansion in ratio of physical scales: p/Λb=λb/r

Symmetries of underlying theory limit possibilities: all possible terms 
up to a given order present in EFT

Short distances: unknown coefficients at a given order in the 
expansion need to be determined. Symmetry relates their impact on 
different processes

Examples: standard model, chiral perturbation theory, Halo EFT

Monet (1881)

Error grows as first omitted term in expansion
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χPT⇒pion interactions are weak at low energy.  
Weinberg (1990), apply χPT to V, i.e. expand it in P=p/Λb

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)
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χEFT for nuclear forces
χPT⇒pion interactions are weak at low energy.  
Weinberg (1990), apply χPT to V, i.e. expand it in P=p/Λb

Leading-order V:

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

V (0) = + ;

(E − H0)|ψ⟩ = V |ψ⟩

V = V
(0)

+ V
(2)

+ V
(3)

+ . . .

hp0|V |pi = C3S1P3S1 + C1S0P1S0 + V1⇡(p0 � p)
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χPT⇒pion interactions are weak at low energy.  
Weinberg (1990), apply χPT to V, i.e. expand it in x=p/Λb

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)
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χEFT for nuclear forces

χPT⇒pion interactions are weak at low energy.  
Weinberg (1990), apply χPT to V, i.e. expand it in x=p/Λb

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

(E − H0)|ψ⟩ = V |ψ⟩

V = V
(0)

+ V
(2)

+ V
(3)

+ . . .

Consistent 3nfs, 4nfs

Figure courtesy 
E. Epelbaum



NN scattering
Potential regulated by local function, parameterized by R

Epelbaum, Krebs, Meissner, PRL (2015);  EPJA (2015)

EKM state 
Λb=600 MeV

σnp(Elab) = σLO

k

∑
n=0

cn(prel)( prel

Λb )
n

np observables at Elab=96 MeV at NLO, N2LO, N3LO (k=2, 3, 4) 

R=0.9 fm 
here
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Behavior of a χEFT series
Expansion in mπ/(MΔ-MN)≃0.4

For proton electric polarizability, χPT⇒

What is the theoretical uncertainty of this result, Δ2?
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Behavior of a χEFT series
Expansion in mπ/(MΔ-MN)≃0.4

For proton electric polarizability, χPT⇒

What is the theoretical uncertainty of this result, Δ2?

Rewrite as

We cannot know the result for c3 before we compute it

Two questions: 

What is expectation for c3 before we know c0, c1, c2?

In fact {cn}={1,-0.46,0.75}.  What then is expectation for c3?

One possibility: c3=max{c0,c1,c2} Epelbaum, Krebs, Meissner (2014)
cf. McGovern, Griesshammer, Phillips (2013); many others. 

↵(p)
E1 = 12.5� 2.3 + 1.5 = 11.7

↵(p)
E1

= ↵LO[1 + c1(0.4) + c2(0.4)
2 + c3(0.4)

3]

Updating



Bayesian tools

http://www.bayesian-inference.com

Thomas Bayes (1701?-1761)
pr(A|B, I) =

pr(B|A, I)pr(A|I)
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Bayesian tools
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Thomas Bayes (1701?-1761)

Posterior

Likelihood

Normalization

Prior

Probability as 
degree of belief

pr(A|B, I) =
pr(B|A, I)pr(A|I)

pr(B|I)

pr(x|data, I) = pr(data|x, I)pr(x|I)
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Bayesian tools

http://www.bayesian-inference.com

Thomas Bayes (1701?-1761)

Posterior

Likelihood

Normalization

Prior

Probability as 
degree of belief

pr(A|B, I) =
pr(B|A, I)pr(A|I)

pr(B|I)

Marginalization: pr(x|data, I) =
Z

dy pr(x, y|data, I)

Allows us to integrate out “nuisance” (e.g. higher-order) parameters

pr(x|data, I) = pr(data|x, I)pr(x|I)
pr(data|I)

http://physics.stackexchange.com
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Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011
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General EFT series for observable to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I)

I=information about EFT, e.g. naturalness
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Probability for EFT coefficients

General EFT series for observable to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I)

I=information about EFT, e.g. naturalness

“Prior A”: 

Prior expectations will guide result, but they are not be all and end all; 
maximum of coefficients informed by known coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011
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General EFT series for observable to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I)

I=information about EFT, e.g. naturalness

“Prior A”: 

Prior expectations will guide result, but they are not be all and end all; 
maximum of coefficients informed by known coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

pr(cn|c̄) =
1

2c̄
✓(c̄� cn); pr(c̄) =

1

2 ln(✏)c̄
✓

✓
1

✏
� c̄

◆
✓(c̄� ✏)

pr(ck+1|c0, c1, . . . , ck) /
(

1 if ck+1 < cmax⇣
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Result:
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k
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k + 2
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Probability for EFT coefficients

General EFT series for observable to order k: 

Compute conditional probability distribution: pr(ck+1|c0,…,ck,I)

I=information about EFT, e.g. naturalness

“Prior A”: 

Prior expectations will guide result, but they are not be all and end all; 
maximum of coefficients informed by known coefficients

Furnstahl, Klco, DP, Wesolowski, PRC,2015 after Cacciari and Houdeau, JHEP, 2011

pr(cn|c̄) =
1

2c̄
✓(c̄� cn); pr(c̄) =

1

2 ln(✏)c̄
✓

✓
1

✏
� c̄

◆
✓(c̄� ✏)

pr(ck+1|c0, c1, . . . , ck) /
(

1 if ck+1 < cmax⇣
cmax
ck+1

⌘k+2
if ck+1 > cmax

Result:
x=0.33; cmax=1

X = X0

k

∑
i=0

cixi



NN scattering cross sections
NN cross section at Tlab=50, 96, 
143, 200 MeV

Potential regulated by local 
function, parameterized by R. 
Here: R=0.9 fm data

Results at LO, NLO, N2LO, 
N3LO, N4LO (k=0, 2, 3, 4, 5) 

�np(Elab) = �LO

kX

n=0

cn(prel)
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Epelbaum, Krebs, Meissner, EPJA, 2015
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Potential regulated by local 
function, parameterized by R. 
Here: R=0.9 fm data

Results at LO, NLO, N2LO, 
N3LO, N4LO (k=0, 2, 3, 4, 5) 
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kX
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Epelbaum, Krebs, Meissner, EPJA, 2015
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EKM state 
Λb=600 MeV
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The well-calibrated EFTist

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent 

Fix a given DOB interval, compute 
actual success ratio and compare

Look at this over EKM 
predictions at four different 
orders and four different energies

Interpret in terms of rescaling of 
Λb by a factor λ

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

Furnstahl, Klco, DP, Wesolowski, PRC, 2015



The well-calibrated EFTist

Now we consider predictions at 
each order, with their error bars,  
as data and test them to see if the 
procedure is consistent 

Fix a given DOB interval, compute 
actual success ratio and compare

Look at this over EKM 
predictions at four different 
orders and four different energies

Interpret in terms of rescaling of 
Λb by a factor λ

No evidence for significant rescaling of Λb

after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

Furnstahl, Klco, DP, Wesolowski, PRC, 2015



Physics from consistency plots

Allows assessment of order-by-order convergence

Can look at differential cross section and spin observables too

R=0.9 fm R=1.2 fm



Melendez, Furnstahl, Wesolowski, PRC, 2017

Physics from consistency plots

Allows assessment of order-by-order convergence

Can look at differential cross section and spin observables too

R=0.9 fm R=1.2 fm
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What we do and don’t know about the strong nuclear force

EFT: organizing what we know, constraining what we don’t

EFT truncation errors from a Bayesian analysis: NN scattering

EFT for halo nuclei: universal formula for γ + AZ→A-1Z + n

Uncertainty quantification for fusion: 7Be(p,γ) at solar energies

Conclusion
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Ordinary vs. halo nuclei
In nuclei, each nucleon moves in the 
potential generated by the others

The nuclear size grows as A1/3; cross sections 
like A2/3

Nuclear binding energies are on the order of 
8 MeV/nucleon

http://alternativephysics.org
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Ordinary vs. halo nuclei
In nuclei, each nucleon moves in the 
potential generated by the others

The nuclear size grows as A1/3; cross sections 
like A2/3

Nuclear binding energies are on the order of 
8 MeV/nucleon

Halo nuclei: the last few nucleons “orbit” far from the nuclear “core”

Characterized by small nucleon binding energies, large radii, large 
interaction cross sections, large E1 transition strengths.

http://www.uni-mainz.de

11Be
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Halo nuclei: history & examples
11Li identified as “halo nucleus” in 1985

22C, <r02>1/2=5.4(9) fm

Subsequently remeasured, <r02>1/2=3.44(8) fm

Often Borromean systems

Understanding essential to modeling of neutron-rich nuclei

“Open quantum systems”: physics beyond mean field

Universality: common features of weakly-bound quantum systems 

Togano et al., Phys. Lett. B (2016)

Tanaka et al., Phys. Rev. Lett. (2010)

Tanihata et al., Phys. Rev. Lett. (1985)



http://nupecc.org

20C 22C

6Be

Halo nuclei: history & examples



Halo EFT

4He

n

n

λ≫Rcore; λ≲Rhalo

Bertulani, Hammer, van Kolck, NPA (2003); 
Bedaque, Hammer, van Kolck, PLB (2003); 

Review: Hammer, Ji, DP, J. Phys. G 44, 103002 (2017).



Halo EFT

Define Rhalo=<r2>1/2. Seek EFT expansion in Rcore/Rhalo. Valid for λ≲Rhalo

Typically R≡Rcore∼2 fm. And since <r2> is related to the neutron 
separation energy we are looking for systems with neutron separation 
energies of order1 MeV or less

By this definition the deuteron is the lightest halo nucleus, and the 
pionless EFT for few-nucleon systems is a specific case of Halo EFT

4He

n

n

λ≫Rcore; λ≲Rhalo

Bertulani, Hammer, van Kolck, NPA (2003); 
Bedaque, Hammer, van Kolck, PLB (2003); 

Review: Hammer, Ji, DP, J. Phys. G 44, 103002 (2017).
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Predicting dissociation
Leading order: no FSI⇒ γ0 is only free parameter=0.16 fm-1 for 19C

Chen, Savage (1999)  

Universal E1 strength formula for S-wave halos
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Final-state interactions suppressed by (Rcore/Rhalo)3

Short-distance piece of E1 m.e.:

Predicting dissociation
Leading order: no FSI⇒ γ0 is only free parameter=0.16 fm-1 for 19C

Chen, Savage (1999)  

Universal E1 strength formula for S-wave halos

LE1�
†E · (n

$
r c) + h.c.⇠

✓
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Rhalo

◆4
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Results

Data: Nakamura et al., 1999, 2003; 
Fukuda et al., 2004 

Analysis: Acharya, Phillips, 2013; 
Hammer, Ji, Phillips, 2017

Determine S-wave18C-n scattering 
parameters⇔19C ANC from dissociation data.

ɣ0↔a0

r0 ↔A0



Results

Data: Nakamura et al., 1999, 2003; 
Fukuda et al., 2004 

Analysis: Acharya, Phillips, 2013; 
Hammer, Ji, Phillips, 2017

a = (7.75± 0.35(stat.)± 0.3(EFT)) fm;
r0 = (2.6+0.6

�0.9(stat.)± 0.1(EFT)) fm.
For 19C:

ɣ0↔a0

r0 ↔A0



Ab initio→Halo EFT→Reaction theory

11Be is a halo nucleus: last neutron 
only bound to 10Be by 503 keV.  Has 
a p-wave halo state with S1n=184 keV.

Model Coulomb dissociation of 11Be 
via sophisticated “Dynamical Eikonal 
Approximation”: includes nuclear and 
Coulomb 208Pb-10Be-n potentials

Use Halo EFT to identify important 
10Be-n inputs for reaction-theory 
calculation: s- and p-wave phase shifts

Take those from ab initio calculation 
of Calci et al. based on modern 
nuclear forces and NCSMC (PRL 
117, 242501)

Exp. (Θ < 6 ◦)

NLO uncertainty band

σ = 2 fm

σ = 1 .5 fm

σ = 1 .2 fm

E (MeV)

dσ
b
u
/d
E

(b
/M

eV
)

43210

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

No dependence on interior of 
10Be-n potential used

Capel, DP, Hammer, Phys. Rev. C 98, 034610 (2018) 
Data: Fukuda et al., Phys. Rev. C 70, 054606 (2004). 



Why is 7Be(p,γ) important?



Why is 7Be(p,γ) important?

Part of pp chain (ppIII)

Key for predictions flux of solar 
neutrinos, especially high-energy 
(8B) neutrinos

Accurate knowledge of 7Be(p,ɣ) 
needed for inferences from 
solar-neutrino flux regarding 
chemical composition of 
Sun→solar-system formation 
history

S(0)=20.8 ± 0.7 ± 1.4 eV b
“SFII”: Adelberger et al. (2010)
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This is an extrapolation problem 

E1 capture: 7Be + p→8B + γ 

Energies of relevance 20 keV

Thermonuclear 
reaction rate
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SF II central value used energy-dependence from Descouvemont’s ab 
initio eight-body calculation. Errors from consideration of energy-
dependence in a variety of “reasonable models”

Status as in “Solar Fusion II”

Energies of relevance≈20 keV 

There dominated by 7Be-p 
separations ∼10s of fm

Below narrow 1+ resonance 
proceeds via s- and d-wave 
direct capture

Energy dependence due to 
interplay of bound-state 
properties, Coulomb, strong ISI



Capture to p-wave halo in EFT

At LO:  p-wave 1n halo described solely by its ANC and binding energy

Capture to the p-wave state proceeds via the one-body E1 operator: 
“external direct capture”

NLO: piece of the amplitude representing capture at short distances, 
represented by a contact operator⇒there is an LEC that must be fit

u1(r) = A1 exp(��1r)

✓
1 +

1

�1r

◆

(0)

Hammer & DP, NPA (2011)

E1 /
Z 1

0
dr u0(r)ru1(r); u0(r) = 1� r

a



NLO for 7Be(p,γ)

S(E) = f(E)
X

s

C2
s

��SEC (E; �s(E)) + LsSSD (E; �s(E)) + ✏sSCX (E; �s(E))
��2 + |D(E)|2

�
.

Four parameters at LO; 
five more at NLOANCs in 5P2 and 3P2: A5P2 and A3P2

Scattering lengths and effective ranges in both 5S2 and 3S1: a2, r2 and a1, r1

Core excitation: determined by ratio of 8B couplings of 7Be*p and 7Be-p states: ϵ1

LECs associated with contact interaction, one each for S=1 and S=2: L1 and L2

 cf. Ryberg, Forssen, Hammer, Platter, EPJA (2014)

Zhang, Nollett, Phillips, PRC (2014)

Zhang, Nollett, Phillips, PLB (2015); PRC (2018)

LO calculation: ISI in S=2 & S=1 into p-wave bound state. Scattering wave 
functions are linear combinations of Coulomb wave functions F0 and G0. Bound 
state wave function=the appropriate Whittaker function

We also incorporate a low-lying excited state (1/2-) in 7Be

NLO: piece of the amplitude representing capture at short distances, 
represented by a contact operator⇒there is an LEC that must be fit



Zhang, Nollett, DP, PLB, 2015; arXiv:1708.04017 

Extrapolation to zero energy
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N3LO contact operator



Zhang, Nollett, DP, PLB, 2015; arXiv:1708.04017 

Extrapolation to zero energy

pr
�
F̄ |D;T ; I

�
=

Z
pr (~g, {⇠i}|D;T ; I) �(F̄ � F (~g))d⇠1 . . . d⇠5d~g

S(0) = 21.33+0.66
�0.69 eV b

No N2LO corrections

Also assessed impact of 
N3LO contact operator

Uncertainty reduced by factor of two: 
model selection

Some remaining 
uncertainty due to 8B S1p



Ongoing work along these lines

Simultaneous fit to 7Be+p scattering data: requires 
inclusion of resonances (TRIUMF experiment)

Same techniques applied to 3He(4He,γ)

Coulomb dissociation: better reaction theory and 
connection to ab initio structure

Rotational states as explicit degrees of freedom

Gaussian process models for EFT truncation errors

χEFT truncation errors in nuclear & neutron matter 

Parameter estimation for 3NFs in χEFT

Poudel, Zhang, DP

Capel, Hammer, DP

Coello Pérez, Papenbrock 
Alnamlah, Coello Perez, DP

Melendez, Furnstahl, DP, Wesolowski

Vaghani, Higa, Rupak

Zhang, Nollett, DP

Drischler, Melendez, Furnstahl, DP



One thing is certain….

Physical Review A Editorial, 29 April 2011



One thing is certain….

Physical Review A Editorial, 29 April 2011

Bayesian Uncertainty Quantification: 
Errors for Your EFT
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Theorists Anonymous

Admit that you have a problem: your theory has uncertainties

Acknowledge the existence of a higher power

Seek to understand its impact on your theory

Make a searching and fearless inventory of errors

Acknowledge your mistakes

Make amends for those mistakes

Help others who must deal with the same issues
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A Generic EFT
Suppose we are interested in a quantity as a function of a momentum, p, 
that is small compared to some high scale, Λb.

EFT expansion for quantity is g(x) =
kX

i=0

Ai(x)x
i

x =
p

⇤b

Ai(x) = ai(µ) + fi(x, µ) ai, fi = O(1) for µ ⇠ ⇤b, x ⇠ 1



              is a calculable function, that encodes IR physics at order i

ai is a low-energy constant (LEC): encodes UV physics at order i. Must 
be fit to data

Complications: multiple light scales, multiple functions at a given order, 
skipped orders, ….

A Generic EFT
Suppose we are interested in a quantity as a function of a momentum, p, 
that is small compared to some high scale, Λb.

EFT expansion for quantity is g(x) =
kX

i=0

Ai(x)x
i

fi(x, µ)

x =
p

⇤b

Ai(x) = ai(µ) + fi(x, µ) ai, fi = O(1) for µ ⇠ ⇤b, x ⇠ 1
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Bayes theorem: 

Marginalization: 

pr(c̄|c0, c1, . . . , ck) =
pr(c0, c1, . . . , ck|c̄)pr(c̄)

pr(c0, c1, . . . , ck)

= Npr(c̄)⇧k
n=0pr(cn|c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)



Bayes→Result

Bayes theorem: 

Marginalization: 

This is generic, but the integrals are simple in the case of  “Prior A”

pr(c̄|c0, c1, . . . , ck) =
pr(c0, c1, . . . , ck|c̄)pr(c̄)

pr(c0, c1, . . . , ck)

= Npr(c̄)⇧k
n=0pr(cn|c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) /
⇢

0 if c̄ < max{c0, . . . , ck}
1/c̄k+2 if c̄ > max{c0, . . . , ck}

pr(ck+1|c0, c1, . . . , ck) /
(

1 if ck+1 < cmax⇣
cmax
ck+1

⌘k+2
if ck+1 > cmax



I don’t like THAT prior!

Modify Set A to restrict cbar to a finite range, e.g. A[0.25,4]

Set B: give cbar a log-normal prior: 

Set C:

Same formulas as before can be invoked. Now numerical.

You don’t like these? Pick your own and follow the rules… 

First omitted term approximation

pr(c̄) =
1p
2⇡c̄�

e�(log c̄)2/2�2

pr(cn|c̄) = 1p
2⇡c̄

e�c2n/2c̄
2

; pr(c̄) / 1
c̄ ✓(c̄� c̄<)✓(c̄> � c̄)

pr(ck+1|c0, c1, . . . , ck) =
Z 1

0
dc̄ pr(ck+1|c̄)pr(c̄|c0, c1, . . . ck)

pr(c̄|c0, c1, . . . , ck) = Npr(c̄)⇧k
n=0pr(cn|c̄)



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.

At one energy:

(NLO: k=2, NNLO: k=3, N3LO: k=4, etc.)



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.

Using 5 energies (and 2 angles): 

At one energy:

(NLO: k=2, NNLO: k=3, N3LO: k=4, etc.)



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.

At one energy:

(NLO: k=2, NNLO: k=3, N3LO: k=4, etc.)

Using 17 energies (and 7 angles): 



BREAKDOWN-SCALE INFERENCE
Λb determines the size of the cn’s. Choose it too big, and they’ll be too big. 
Choose it too small, they’ll be too small.  And progressively so as one 
moves to higher and higher order. 

We have a theory for pr(cn|c0, c1, …, ck): now use Bayes’ theorem to see 
how (im)probable are the cn’s that dimensionful EFT coefficients (bn’s) 
produce for a given Λb.

At one energy:

(NLO: k=2, NNLO: k=3, N3LO: k=4, etc.)

Using 17 energies (and 7 angles): 
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FUNCTIONAL DATA

But we don’t have 119 
independent data points

We have a function for each 
observable at each order

Can we understand the 
properties of these functions, 
so we can do Λb inference 
and compute success ratios 
rigorously?

�(E) = �0(E)
⇥
1 + c2(E)x2 + c3(E)x3 + c4(E)x4 + c5(E)x5

⇤



OBSERVATIONS AND QUESTIONS
cn’s do not grow or shrink 
with n: good Λb choice

Bounded functions, mostly 
between -2 and 2

Each “takes a turn” at being 
largest

Not oscillating quickly in this 
energy range

Λb=600 MeV
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OBSERVATIONS AND QUESTIONS
cn’s do not grow or shrink 
with n: good Λb choice

Bounded functions, mostly 
between -2 and 2

Each “takes a turn” at being 
largest

Not oscillating quickly in this 
energy range

Physics questions: 

Do curves all fluctuate around zero with some common variance? 

What is the correlation length? Is it different at each order?

Λb=600 MeV



Coulomb dissociation of halo nuclei

Coulomb dissociation: collide halo 
nucleus (we hope peripherally) with a 
high-Z nucleus

Do with different Z, different nuclear 
sizes, different energies to test 
systematics

Bertulani, arXiv:0908.4307



                    virtual photon numbers, dependent only on kinematic factors. Number of 
equivalent (virtual) photons that strike the halo nucleus.

Coulomb excitation dissociation cross section (p.v. b≫Rtarget)
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                    virtual photon numbers, dependent only on kinematic factors. Number of 
equivalent (virtual) photons that strike the halo nucleus.

Coulomb excitation dissociation cross section (p.v. b≫Rtarget)

                 can then be extracted: it’s the (total) cross section for dissociation of the 
nucleus due to the impact of photons of multipolarity πL.

Coulomb dissociation of halo nuclei

Coulomb dissociation: collide halo 
nucleus (we hope peripherally) with a 
high-Z nucleus

Do with different Z, different nuclear 
sizes, different energies to test 
systematics

Bertulani, arXiv:0908.4307
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Lagrangian for s- and p-wave states

c, n: “core”, “neutron” fields. c: boson, n: fermion

σ, πj: S-wave and P-wave fields

Minimal substitution generates leading EM couplings

L = c†
⇤

i⌃t +
⇤2

2M

⌅
c + n†

⇤
i⌃t +

⇤2

2m

⌅
n

+⇤†
⇧
�0

⇤
i⌃t +

⇤2

2Mnc

⌅
+ �0

⌃
⇤ + ⇥†

j

⇧
�1

⇤
i⌃t +

⇤2

2Mnc

⌅
+ �1

⌃
⇥j

�g0

�
⇤n†c† + ⇤†nc

⇥
� g1

2

⇧
⇥†

j (n
⇥

i⇤j c) + (c†
⇥

i⇤j n†)⇥j

⌃

�g1

2
M �m

Mnc

⇧
⇥†

j

�
i⇤j (nc)�

⇥
i⇤j (n†c†)⇥j

⌃
+ . . . ,

s-wave: Kaplan, Savage, Wise (1998); van Kolck 
(1999); Birse, Richardosn, McGovern 1999)

p-wave: Bertulani, Hammer, van Kolck (2002); 
Bedaque, Hammer, van Kolck (2003)



σnc coupling g0 of order Rhalo, nc loop of order 1/Rhalo. Therefore need 
to sum all bubbles:

Dressing the s-wave state

D�(p) =
1

�0 + �0[p0 � p2/(2Mnc)]� ⇥�(p)

= +

t =
2�

mR

1
1
a0
� 1

2r0k2 + ik

Kaplan, Savage, Wise; van Kolck; Gegelia; 
Birse, Richardson, McGovern

��(p) = �g2
0mR

2⇤

⇤
µ + i

⇧

2mR

�
p0 �

p2

2Mnc
+ i�

⇥⌅
(PDS)

+ regularD�(p) =
2⇥�0

m2
Rg2

0

1
1� r0�0

1
p0 � p2

2Mnc
+ B0

Counting in S waves: 
a0∼Rhalo∼1/γ0; r0∼Rcore. 

r0=0 at LO.
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One-slide p-wave review
For a short-ranged potential, if kR≲1:

“Natural case” a1∼R3; r1∼1/R. ⇒ t1 ∼R3k2,, so small cf. t0 ∼1/k (N3LO)

But what if there is a low-energy p-wave resonance?

Causality says r1 ≲ -1/R

So low-energy resonance/bound state would seem to have to arise 
due to cancellation between -1/a1 and 1/2 r1 k2 terms. 

a1 ∼R/Mlo2 gives kR ∼Mlo

hk|t1|k0i = � 6⇡

mR

k · k0

� 1
a1

+ 1
2r1k

2 � ik3
Bethe (1949)

Wigner (1955); Hammer & Lee (2009); Nishida (2012)

Bedaque, Hammer, van Kolck (2003)



Dressing the p-wave state
Proceed similarly for p-wave state as for s-wave state

Here both Δ1 and g1 are mandatory for renormalization at LO

Reproduces ERE. But here (cf. s waves) cannot take r1=0 at LO

= +

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)
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Dressing the p-wave state
Proceed similarly for p-wave state as for s-wave state

Here both Δ1 and g1 are mandatory for renormalization at LO

Reproduces ERE. But here (cf. s waves) cannot take r1=0 at LO

= +

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)

��(p) = �mRg2
1k2

6⇥

�
3
2
µ + ik

⇥

+ regularD�(p) = � 3⇥

m2
Rg2

1

2
r1 + 3�1

i

p0 � p2/(2Mnc) + B1

D�(p) =
1

�1 + �1[p0 � p2/(2Mnc)]� ⇥�(p)

If a1 > 0 then pole is at k=iγ1 with B1=γ12/(2mR):
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A narrow p-wave resonance/bound state

First EFT paper to do this assigned a1∼1/Mlo3; r1∼Mlo

Here we adopt r1∼1/R, a1∼Mlo2/R

So, off resonance, Re[t-1]>Im[t-1]: phase shifts are O(MloR) and scattering is 
perturbative away from resonance
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A narrow p-wave resonance/bound state

First EFT paper to do this assigned a1∼1/Mlo3; r1∼Mlo

Here we adopt r1∼1/R, a1∼Mlo2/R

So, off resonance, Re[t-1]>Im[t-1]: phase shifts are O(MloR) and scattering is 
perturbative away from resonance

Resonance width is ∼ER kR/r1, so it is parametrically narrow. Need to 
resum width if k2-kR2 gets small

hk|t1|k0i = � 12⇡

mRr1

k · k0

k2 � k2R

Bertulani, Hammer, van Kolck (2002)

Bedaque, Hammer, van Kolck (2003)

k2R =
2

a1r1

cf. Pascalutsa, DP (2003)



P-wave FSI in γE1 + 11Be→10Be + n

11Be: 1/2- (P-wave) state bound by 0.18 MeV
Typel & Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)
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11Be: 1/2- (P-wave) state bound by 0.18 MeV

10Be + n FSI “natural” in spin-3/2 channel, i.e. suppressed by three orders

FSI in spin-1/2 channel: stronger, but “kinematic” nature of P-wave bound 
state means P-wave scattering is perturbative away from it. EFT analysis in 
terms of scales:

+

LO NLO

 k3 cot δ1=-1/2 r1 (k2 + γ12) ⇒ δ1 ∼ Rcore/Rhalo if k ∼ 1/Rhalo ∼ γ1.
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P-wave FSI in γE1 + 11Be→10Be + n

11Be: 1/2- (P-wave) state bound by 0.18 MeV

10Be + n FSI “natural” in spin-3/2 channel, i.e. suppressed by three orders

FSI in spin-1/2 channel: stronger, but “kinematic” nature of P-wave bound 
state means P-wave scattering is perturbative away from it. EFT analysis in 
terms of scales:

Need both γ1 and r1≣A1 at NLO in this observable. A0 also becomes a free 
parameter at NLO: fit it to Coulomb dissociation data

+

LO NLO

 k3 cot δ1=-1/2 r1 (k2 + γ12) ⇒ δ1 ∼ Rcore/Rhalo if k ∼ 1/Rhalo ∼ γ1.

Typel & Baur, Phys. Rev. Lett. 93, 142502 (2004); Nucl. Phys. A759, 247 (2005); Eur. Phys. J. A 38, 355 (2008)

Bertulani, Hammer, van Kolck (2002); Bedaque, Hammer, van Kolck (2003)



Coulomb dissociation of 11Be: result

• Reasonable convergence

• Information on value of r0 

through fitting of A0:

r0=2.7 fm

Data: Palit et al., 2003 
Analysis: Hammer, Phillips. NPA, 2011
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Coulomb dissociation of 11Be: result

• Reasonable convergence

• Information on value of r0 

through fitting of A0:

NLO: (<rc2>+<rBe2>) 1/2=2.44 fm

r0=2.7 fm

• Here value of r1 used to fit 
B(E1:1/2+→1/2-) works.

Need P-wave effective range

r1=-0.66 fm-1

Data: Palit et al., 2003 
Analysis: Hammer, Phillips. NPA, 2011

Use of ab initio input, e.g. for ANC?



7Li ground state is 3/2-: S-wave n scattering in 5S2 and 3S1

7Li + n→8Li + γE1

aS=2 ~Rhalo; aS=1~Rcore
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7Li ground state is 3/2-: S-wave n scattering in 5S2 and 3S1

aS=2=-3.63(5) fm, aS=1=0.87(7) fm

7Li + n→8Li + γE1
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7Li ground state is 3/2-: S-wave n scattering in 5S2 and 3S1

aS=2=-3.63(5) fm, aS=1=0.87(7) fm

LO calculation: S=2 (with ISI) and S=1 into P-wave bound state

7Li + n→8Li + γE1

aS=2 ~Rhalo; aS=1~Rcore

2 + - 2.03

1+ - 1.05

3+ 0.22
3ê 2 - 0.
1ê 2 - 0.478

2.47

8 Li

7 Lin+ 7 Li

3 H+ 4 He

u0(r) = 1� r

a
;u1(r) = A1 exp(��1r)

✓
1 +

1
�1r

◆

5S2

E1 /
Z 1

0
dr u0(r)ru1(r);



Fixing 8Li parameters
8Li ground state is 2+: both 5P2 and 3P2 components

8Li first excited state: 1+, bound by 1.05 MeV

c.f. Rupak, Higa, PRL 106, 222501 (2011); 
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

Zhang, Nollett, Phillips, PRC (2014)
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8Li ground state is 2+: both 5P2 and 3P2 components

8Li first excited state: 1+, bound by 1.05 MeV
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c.f. Rupak, Higa, PRL 106, 222501 (2011); 
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Fixing 8Li parameters
8Li ground state is 2+: both 5P2 and 3P2 components

8Li first excited state: 1+, bound by 1.05 MeV

Input at LO: B1=2.03 MeV; B1*=1.05 MeV⇒γ1=58 MeV; γ1*=42 MeV.

Also include 1/2- excited state of 7Li as explicit d.o.f.

Need to also fix 2+2 p-wave ANCs at LO.  (1+2 ANCs for |7Li*>|n> 
component.) 

VMC calculation with AV18 + UIX gives all ANCs: infer r1=-1.43 fm-1

c.f. Rupak, Higa, PRL 106, 222501 (2011); 
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

Zhang, Nollett, Phillips, PRC (2014)

r1~1/Rcore

γ1~1/Rhalo

A(3P2) A(5P2) A(3P2*) A(3P1)* A(5P1)*

Nollett -0.283(12) -0.591(12) -0.384(6) 0.220(6) 0.197(5)

Trache -0.284(23) -0.593(23) 0.187(16) 0.217(13)



LO results for 7Li + n→8Li + γE1
Analysis: Zhang, Nollett, Phillips, PRC (2014)

Data: Barker (1996), cf. Nagai et al. (2005) 
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Experiment=0.88

Analysis: Zhang, Nollett, Phillips, PRC (2014)
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LO results for 7Li + n→8Li + γE1

Experiment=0.88

Analysis: Zhang, Nollett, Phillips, PRC (2014)

Lynn et al., 1991

�(5S2 ! 2+)
�(! 2+)

= 0.95

Experiment > 0.86
Barker, 1996

Data: Barker (1996), cf. Nagai et al. (2005) 

Dynamics predicted through ab initio input

�(! 2+)

�(! 2+) + �(! 1+)
= 0.89



42 data points for 100 keV < Ec.m. < 500 keV

Junghans (BE1 and BE3)

Fillipone

Baby

Hammache (1998 and 2001) 

Subtract M1 resonance: negligible impact at 500 keV and below 

Deal with CMEs by introducing five additional parameters, ξj

Data situation

CMEs

2.7% and 2.3%

11.25%

5%

2.2% (1998)



Building the pdf
Bayes:

First factor: likelihood

Second factor: priors

Independent gaussian priors for ξj, centered at zero and with width=CME

Gaussian priors for aS=1 and aS=2, based on Angulo et al. measurement

All other EFT parameters assigned flat priors, corresponding to natural 
ranges

No s-wave resonance below 600 keV

pr (~g, {⇠i}|D;T ; I) = pr (D|~g, {⇠i};T ; I) pr (~g, {⇠i}|I) ,

ln pr (D|~g, {⇠i};T ; I) = c�
NX

j=1

[(1� ⇠j)S(~g;Ej)�Dj ]
2

2�2
j

,



Marginalizing→pdfs

pr (g1, g2|D;T ; I) =

Z
pr (~g, {⇠i}|D;T ; I) d⇠1 . . . d⇠5dg3 . . . dg9
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More questions we can answer

42 data points,
7 parameters “fit” 

to these data,
5 ξi,’s fixed to their 

mean values 
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Is it a “good fit”?

Did the experimentalists understand their systematic errors?

More questions we can answer



Is it a “good fit”?

Did the experimentalists understand their systematic errors?

Are there parameters that are not well constrained by these data?

More questions we can answer



Truncation error
N2LO correction=0 (technically only in absence of excited state)

EFT s-wave scattering corrections (shape parameter)~0.8%

E2, M1 contributions < 0.01%, Radiative corrections: ~0.1%

So first correction is at N3LO, i.e.,

-10 -5 0 5 10
-10
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0
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10

L
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Li ! Li + k2L
0
i



Planning improvements

A: ANC
S: aS=1 and aS=2

L: short-distance

Left-to-right:
42 data points all of 

similar quality
to Junghans et al. 

Use extrapolant to simulate impact of hypothetical 
future data that could inform posterior pdf for S(0)

Note that 1 keV uncertainty in S1p of 8B may not be negligible effect



A sneak peek at 3He(4He,ɣ)
Zhang, Nollett, DP, in preparation
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Halo EFT as a “super model”
Halo EFT is also the EFT of all the models used to extrapolate the cross 
section in “Solar Fusion II”

Differences are sub-% level between 0 and 0.5 MeV

Parameters generally obey a~1/Rhalo, r ~Rcore, L~Rcore, as expected

Absolute size of S(0) over-predicted in all models, but curves rescaled in 
fits for Solar Fusion II


