Knowing What You Don’t Know: Nuclear Reactions, Effective Field Theory & Uncertainty Quantification

Daniel Phillips
Ohio University
TU Darmstadt
EMMI

Research supported by the US DOE and by EMMI
Hurricane forecasting

Data: National Hurricane Center, NOAA. Updated: Sep 14, 2018, 2:00 pm

http://www.vox.com
Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations

Data: National Hurricane Center, NOAA. Updated: Sep 14, 2018, 2:00 pm

http://www.vox.com
Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations
- Need to know initial state accurately (computing!)
- Evolve state forward in time (more computing!)
- Uncertainty quantification

Data: National Hurricane Center, NOAA. Updated: Sep 14, 2018, 2:00 pm

http://www.vox.com
Hurricane forecasting

- Forces, e.g., Coriolis
- Conservation laws
- Parameterizations

- Need to know initial state accurately (computing!)
- Evolve state forward in time (more computing!)
- Uncertainty quantification
Nuclear reactions

\[i\hbar \frac{\partial |\Psi\rangle}{\partial t} = (\hat{T} + \hat{V})|\Psi\rangle \]
Nuclear reactions

- Forces: electromagnetic, strong nuclear
- Conservation laws, e.g., probability, energy, momentum
- Some parameterizations
- Accurate knowledge of initial state (nuclear structure)
- Computing to evolve state forward in time
- Uncertainty quantification

\[i\hbar \frac{\partial |\Psi\rangle}{\partial t} = (\hat{T} + \hat{V})|\Psi\rangle \]
Outline

- What we do and don’t know about the strong nuclear force
- EFT: organizing what we know, constraining what we don’t
- EFT truncation errors from a Bayesian analysis: NN scattering
- EFT for halo nuclei: universal formula for $\gamma + ^{AZ} \rightarrow ^{A-1}Z + n$
- Uncertainty quantification for fusion: $^7\text{Be}(p,\gamma)$ at solar energies
- Conclusion
Potentials from particle exchange
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
- Energy to “make” particle borrowed from vacuum: $\Delta E \Delta t \sim \hbar$
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
- Energy to “make” particle borrowed from vacuum: $\Delta E \Delta t \sim \hbar$
- Particle can travel at most a distance $c \Delta t \sim \hbar/(mc)$
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
- Energy to “make” particle borrowed from vacuum: $\Delta E \Delta t \sim \hbar$
- Particle can travel at most a distance $c \Delta t \sim \hbar/(mc)$
- “Yukawa potential” (1935): $V(r) = -\frac{g^2}{4\pi} \frac{\exp(-\frac{mcr}{\hbar})}{r}$
Potentials from particle exchange

- At the sub-atomic level, forces generated by exchange of particles
- Energy to “make” particle borrowed from vacuum: $\Delta E \Delta t \sim \hbar$
- Particle can travel at most a distance $c \Delta t \sim \hbar/(mc)$
- “Yukawa potential” (1935): $V(r) = -\frac{g^2}{4\pi} \frac{\exp(-\frac{mcr}{\hbar})}{r}$
- Longest range forces generated by lightest particles
The long and the short of hadron physics

\begin{center}
\begin{tabular}{c|c}
\textbf{M (MeV)} & \\
\hline
M_{N} & 939 \\
\hline
\omega & 770 \\
\rho & \\
\hline
\Delta & 293 \\
\pi & 138 \\
\hline
\end{tabular}
\end{center}
The long and the short of hadron physics

- Spectrum of QCD bound states

<table>
<thead>
<tr>
<th>Particle</th>
<th>M (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
<td>939</td>
</tr>
<tr>
<td>ω</td>
<td>770</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>293</td>
</tr>
<tr>
<td>π</td>
<td>138</td>
</tr>
</tbody>
</table>
The long and the short of hadron physics

- Spectrum of QCD bound states
- Now understood as consequence of QCD’s spontaneously broken chiral symmetry: pions are approximate Goldstone bosons of QCD
- For probe energies ~a hundred MeV, simplifications of the rich QCD dynamics emerge: processes dominated by πs (and Δs)

<table>
<thead>
<tr>
<th></th>
<th>M (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
<td>939</td>
</tr>
<tr>
<td>ω</td>
<td>770</td>
</tr>
<tr>
<td>ρ</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>293</td>
</tr>
<tr>
<td>π</td>
<td>138</td>
</tr>
</tbody>
</table>
The long and the short of hadron physics

- Spectrum of QCD bound states
- Now understood as consequence of QCD’s spontaneously broken chiral symmetry: pions are approximate Goldstone bosons of QCD
- For probe energies ~a hundred MeV, simplifications of the rich QCD dynamics emerge: processes dominated by πs (and Δs)
- Pion exchange generates longest-range part of NN force
- But short-distance dynamics too

<table>
<thead>
<tr>
<th>M (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_N</td>
</tr>
<tr>
<td>ω</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>Δ</td>
</tr>
<tr>
<td>π</td>
</tr>
</tbody>
</table>
The NN potential: a cartoon

- Long-range part generated by one-pion exchange
- Intermediate ranges: multiple pion exchange
- Short ranges: “other stuff” exchange
- Needs to be parameterized, then fit to NN scattering data
Effective Field Theory

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g. multipole expansion
- Expansion in ratio of physical scales: \(\frac{p}{\Lambda_b} = \frac{\lambda_b}{r} \)
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral perturbation theory, Halo EFT
Effective Field Theory

Simpler theory that reproduces results of full theory at long distances. Short-distance details irrelevant for long-distance (low-momentum) physics, e.g., multipole expansion. Expansion in the ratio of physical scales: $p/\Lambda = \lambda_b/r$.

Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT. Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes.

Examples: standard model, chiral perturbation theory, Halo EFT.
Effective Field Theory

- Simpler theory that reproduces results of full theory at long distances
- Short-distance details irrelevant for long-distance (low-momentum) physics, e.g. multipole expansion
- Expansion in ratio of physical scales: $\frac{p}{\Lambda_b} = \frac{\lambda_b}{r}$
- Symmetries of underlying theory limit possibilities: all possible terms up to a given order present in EFT
- Short distances: unknown coefficients at a given order in the expansion need to be determined. Symmetry relates their impact on different processes
- Examples: standard model, chiral perturbation theory, Halo EFT

Error grows as first omitted term in expansion
χEFT for nuclear forces
χEFT for nuclear forces

- χPT→pion interactions are weak at low energy.

 Weinberg (1990), apply χPT to V, i.e. expand it in $P=p/\Lambda_b$

 $$(E - H_0)\psi = V\psi$$

 $V = V^{(0)} + V^{(2)} + V^{(3)} + \ldots$

 Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)
χEFT for nuclear forces

- χPT\(\Rightarrow\)pion interactions are weak at low energy.
 Weinberg (1990), apply χPT to V, i.e. expand it in $P=p/\Lambda_b$

$$\left(E - H_0\right)|\psi\rangle = V|\psi\rangle$$

$$V = V^{(0)} + V^{(2)} + V^{(3)} + \ldots$$

- Leading-order V:

 $V^{(0)} = \begin{array}{c}
 \begin{array}{c}
 \text{Cross}
 \end{array}
 \end{array} + \begin{array}{c}
 \begin{array}{c}
 \text{Dash}
 \end{array}
 \end{array}$

$$\langle p'|V|p\rangle = C^{3S_1}P_{3S_1} + C^{1S_0}P_{1S_0} + V_{1\pi}(p' - p)$$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)
χEFT for nuclear forces
\(\chi EFT \) for nuclear forces

- Weinberg (1990), apply \(\chi PT \) to \(V \), i.e. expand it in \(x = p/\Lambda_b \)

\[
(E - H_0)|\psi\rangle = V|\psi\rangle
\]

\[
V = V^{(0)} + V^{(2)} + V^{(3)} + \ldots
\]
\[\chi \text{EFT for nuclear forces} \]

- \(\chi \text{PT} \Rightarrow \) pion interactions are weak at low energy.

Weinberg (1990), apply \(\chi \text{PT} \) to \(V \), i.e. expand it in \(x = p/\Lambda_b \)

\[
(E - H_0) |\psi\rangle = V |\psi\rangle
\]

![Diagram showing two-nucleon, three-nucleon, and four-nucleon forces with consistent 3NFS and 4NFS](image-url)

Figure courtesy E. Epelbaum
Potential regulated by local function, parameterized by R

$$\sigma_{np}(E_{lab}) = \sigma_{LO} \sum_{n=0}^{k} c_n(p_{rel}) \left(\frac{p_{rel}}{\Lambda_b} \right)^n$$

EKM state

$\Lambda_b = 600$ MeV

np observables at $E_{lab} = 96$ MeV at NLO, N^2LO, N^3LO ($k=2, 3, 4$)
Successes in $A=3-12$

Epelbaum et al. (LENPIC), arXiv:1807.02848
Successes in $A=3-12$

- $O(x^4)$ (N^3LO) potential, χ^2 good. $\chi^2/\text{d.o.f.} = 1.00$ up to $E_{\text{lab}}=300$ MeV at $O(x^5^+)$

 Entem, Machleidt (2003);
 Reinert, Krebs, Epelbaum (2018)
Successes in $A=3-12$

- $O(x^4)$ (N^3LO) potential, χ^2 good. $\chi^2/d.o.f. = 1.00$ up to $E_{lab} = 300$ MeV at $O(x^5+)$

 Entem, Machleidt (2003); Reinert, Krebs, Epelbaum (2018)

- nd scattering works well at $k=3$ (N^2LO)

Epelbaum et al. (LENPIC), arXiv:1807.02848
Successes in $A=3\text{-}12$

- $O(x^4)$ (N^3LO) potential, χ^2 good. $\chi^2/d.o.f. = 1.00$ up to $E_{\text{lab}} = 300$ MeV at $O(x^5+)$
 - Entem, Machleidt (2003); Reinert, Krebs, Epelbaum (2018)

- nd scattering works well at $k=3$ (N^2LO)
Successes in A=3-12

- $O(x^4)$ ($N^3\text{LO}$) potential, χ^2 good. $\chi^2/d.o.f. = 1.00$ up to $E_{\text{lab}}=300$ MeV at $O(x^5+)$

 Entem, Machleidt (2003); Reinert, Krebs, Epelbaum (2018)

- nd scattering works well at $k=3$ ($N^2\text{LO}$)

- χEFT at $N^2\text{LO}$ reproduces binding energies of light nuclei reasonably well

Epelbaum et al. (LENPIC), arXiv:1807.02848
Successes in $A=3$-12

$O(x^4) (N_{LO})$ potential, χ^2 good. $\chi^2/d.o.f. = 1.00$ up to $E_{lab} = 300$ MeV at $O(x^5+)$.

Scattering works well at $k=3 (N_{2LO})$. χ^EFT at N_{2LO} reproduces binding energies of light nuclei reasonably well.

Entem, Machleidt (2003);
Reinert, Krebs, Epelbaum (2018)

Epelbaum et al. (LENPIC), arXiv:1807.02848
Behavior of a χEFT series
Behavior of a χEFT series

- Expansion in $m_\pi/(M_\Delta - M_N) \approx 0.4$
- For proton electric polarizability, χPT $\Rightarrow \alpha_{E1}^{(p)} = 12.5 - 2.3 + 1.5 = 11.7$
- What is the theoretical uncertainty of this result, Δ_2?
Behavior of a χEFT series

- Expansion in $m_\pi/(M_\Delta-M_N) \approx 0.4$
- For proton electric polarizability, χPT $\Rightarrow \alpha_{E1}^{(p)} = 12.5 - 2.3 + 1.5 = 11.7$
- What is the theoretical uncertainty of this result, Δ_2?
- Rewrite as $\alpha_{E1}^{(p)} = \alpha_{LO}[1 + c_1(0.4) + c_2(0.4)^2 + c_3(0.4)^3]$
- We cannot know the result for c_3 before we compute it
Behavior of a χEFT series

- Expansion in $m_{\pi}/(M_\Delta-M_N) \approx 0.4$
- For proton electric polarizability, χPT $\Rightarrow \alpha_{E1}^{(p)} = 12.5 - 2.3 + 1.5 = 11.7$
- What is the theoretical uncertainty of this result, Δ_2?
- Rewrite as $\alpha_{E1}^{(p)} = \alpha_{LO}[1 + c_1(0.4) + c_2(0.4)^2 + c_3(0.4)^3]$
- We cannot know the result for c_3 before we compute it
- Two questions:
 - What is expectation for c_3 before we know c_0, c_1, c_2?
 - In fact $\{c_n\} = \{1, -0.46, 0.75\}$. What then is expectation for c_3?
Behavior of a χEFT series

- Expansion in $m_\pi/(M_\Delta-M_N) \approx 0.4$

- For proton electric polarizability, χPT ⇒ $\alpha_{E1}^{(p)} = 12.5 - 2.3 + 1.5 = 11.7$

- What is the theoretical uncertainty of this result, Δ_2?

- Rewrite as $\alpha_{E1}^{(p)} = \alpha_{LO}[1 + c_1(0.4) + c_2(0.4)^2 + c_3(0.4)^3]$

- We cannot know the result for c_3 before we compute it

- Two questions:
 - What is expectation for c_3 before we know c_0, c_1, c_2?
 - In fact $\{c_n\} = \{1, -0.46, 0.75\}$. What then is expectation for c_3?

- One possibility: $c_3 = \max\{c_0, c_1, c_2\}$

Epelbaum, Krebs, Meissner (2014)

cf. McGovern, Griesshammer, Phillips (2013); many others.
Bayesian tools

Thomas Bayes (1701?-1761)

\[\text{pr}(A|B, I) = \frac{\text{pr}(B|A, I)\text{pr}(A|I)}{\text{pr}(B|I)} \]

http://www.bayesian-inference.com
Bayesian tools

Thomas Bayes (1701?-1761)

Probability as degree of belief

\[\text{pr}(x|\text{data}, I) = \frac{\text{pr}(\text{data}|x, I)\text{pr}(x|I)}{\text{pr}(\text{data}|I)} \]

\[\text{pr}(A|B, I) = \frac{\text{pr}(B|A, I)\text{pr}(A|I)}{\text{pr}(B|I)} \]

Likelihood \quad Prior

Posterior \quad Normalization

http://www.bayesian-inference.com
Bayesian tools

Thomas Bayes (1701?-1761)

\[
\text{pr}(A|B, I) = \frac{\text{pr}(B|A, I)\text{pr}(A|I)}{\text{pr}(B|I)}
\]

\[
\text{pr}(x|\text{data}, I) = \frac{\text{pr}(\text{data}|x, I)\text{pr}(x|I)}{\text{pr}(\text{data}|I)}
\]

Probability as degree of belief

Marginalization: \[
\text{pr}(x|\text{data}, I) = \int dy \text{pr}(x, y|\text{data}, I)
\]

Allows us to integrate out “nuisance” (e.g. higher-order) parameters
Probability for EFT coefficients

Probability for EFT coefficients

- General EFT series for observable to order k: $X = X_0 \sum_{i=0}^{k} c_i x^i$

- Compute conditional probability distribution: $\text{pr}(c_{k+1}|c_0, \ldots, c_k, l)$

- l = information about EFT, e.g. naturalness
Probability for EFT coefficients

General EFT series for observable to order k: \(X = X_0 \sum_{i=0}^{k} c_i x^i \)

Compute conditional probability distribution: \(\text{pr}(c_{k+1}|c_0, \ldots, c_k, l) \)

\(l = \) information about EFT, e.g. naturalness

“Prior A”: \(\text{pr}(c_n|\bar{c}) = \frac{1}{2\bar{c}} \theta(\bar{c} - c_n) \); \(\text{pr}(\bar{c}) = \frac{1}{2 \ln(\epsilon) \bar{c}} \theta \left(\frac{1}{\epsilon} - \bar{c} \right) \theta(\bar{c} - \epsilon) \)

Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients
Probability for EFT coefficients

- General EFT series for observable to order k: $X = X_0 \sum_{i=0}^{k} c_i x^i$

- Compute conditional probability distribution: $\text{pr}(c_{k+1}|c_0, \ldots, c_k, I)$

- $I =$ information about EFT, e.g. naturalness

- “Prior A”: $\text{pr}(c_n|\bar{c}) = \frac{1}{2\bar{c}} \theta(\bar{c} - c_n)$; $\text{pr}(\bar{c}) = \frac{1}{2 \ln(\epsilon) \bar{c}} \theta \left(\frac{1}{\epsilon} - \bar{c} \right) \theta(\bar{c} - \epsilon)$

- Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients

Result: $\text{pr}(c_{k+1}|c_0, c_1, \ldots, c_k) \propto \begin{cases}
1 \\
\left(\frac{c_{\text{max}}}{c_{k+1}} \right)^{k+2}
\end{cases}$

if $c_{k+1} < c_{\text{max}}$

if $c_{k+1} > c_{\text{max}}$

$[-c_{\text{max}}X_0x^{k+1}, c_{\text{max}}X_0x^{k+1}]$ is a $\frac{k + 1}{k + 2} * 100\%$ DoB interval
Probability for EFT coefficients

- General EFT series for observable to order \(k \): \(X = X_0 \sum_{i=0}^k c_i x^i \)

- Compute conditional probability distribution: \(\text{pr}(c_{k+1}|c_0, \ldots, c_k, I) \)

- \(I \) = information about EFT, e.g. naturalness

- "Prior A": \(\text{pr}(c_n|\bar{c}) = \frac{1}{2\bar{c}} \theta(\bar{c} - c_n); \text{pr}(\bar{c}) = \frac{1}{2 \ln(\epsilon) \bar{c}} \theta \left(\frac{1}{\epsilon} - \bar{c} \right) \theta(\bar{c} - \epsilon) \)

- Prior expectations will guide result, but they are not be all and end all; maximum of coefficients informed by known coefficients

\[x = 0.33; c_{\text{max}} = 1 \]
NN scattering cross sections

- NN cross section at $T_{lab}=50, 96, 143, 200$ MeV
- Potential regulated by local function, parameterized by R. Here: $R=0.9$ fm data
- Results at LO, NLO, N2LO, N3LO, N4LO ($k=0, 2, 3, 4, 5$)

$$\sigma_{np}(E_{lab}) = \sigma_{LO} \sum_{n=0}^{k} c_n \left(\frac{p_{rel}}{\Lambda_b} \right)^n$$

$$x = \frac{p_{rel}}{\Lambda_b}$$

EKM state $\Lambda_b = 600$ MeV

Epelbaum, Krebs, Meissner, EPJA, 2015
NN scattering cross sections

- NN cross section at $T_{\text{lab}}=50, 96, 143, 200$ MeV
- Potential regulated by local function, parameterized by R. Here: $R=0.9$ fm data
- Results at LO, NLO, N2LO, N3LO, N4LO ($k=0, 2, 3, 4, 5$)

\[\sigma_{np}(E_{\text{lab}}) = \sigma_{\text{LO}} \sum_{n=0}^{k} c_n \left(\frac{p_{\text{rel}}}{\Lambda_b} \right)^n \]

\[x = \frac{p_{\text{rel}}}{\Lambda_b} \]

EKM state $\Lambda_b=600$ MeV
Results
Results
Results
The well-calibrated EFTist
The well-calibrated EFTist

Accuracy of three weather forecasting services

Source: "The Signal and the Noise" by Nate Silver | Author: Randy Olson (randololson.com / @randololson)
The well-calibrated EFTist

Furnstahl, Kleo, DP, Wesolowski, PRC, 2015
after: Bagnaschi, Cacciari, Guffanti, Jenniches, 2015

- Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent
- Fix a given DOB interval, compute actual success ratio and compare
- Look at this over EKM predictions at four different orders and four different energies
- Interpret in terms of rescaling of Λ_b by a factor λ
The well-calibrated EFTist

Now we consider predictions at each order, with their error bars, as data and test them to see if the procedure is consistent.

- Fix a given DOB interval, compute actual success ratio and compare.
- Look at this over EKM predictions at four different orders and four different energies.
- Interpret in terms of rescaling of Λ_b by a factor λ.

No evidence for significant rescaling of Λ_b.
Physics from consistency plots

- Allows assessment of order-by-order convergence
- Can look at differential cross section and spin observables too
Physics from consistency plots

- Allows assessment of order-by-order convergence
- Can look at differential cross section and spin observables too
Outline

- What we do and don’t know about the strong nuclear force
- EFT: organizing what we know, constraining what we don’t
- EFT truncation errors from a Bayesian analysis: NN scattering
- EFT for halo nuclei: universal formula for $\gamma + ^{A}Z \rightarrow ^{A-1}Z + n$
- Uncertainty quantification for fusion: $^7\text{Be}(p,\gamma)$ at solar energies
- Conclusion
Ordinary vs. halo nuclei
Ordinary vs. halo nuclei

- In nuclei, each nucleon moves in the potential generated by the others.

- The nuclear size grows as $A^{1/3}$; cross sections like $A^{2/3}$.

- Nuclear binding energies are on the order of 8 MeV/nucleon.

http://alternativephysics.org
Ordinary vs. halo nuclei

- In nuclei, each nucleon moves in the potential generated by the others.
- The nuclear size grows as $A^{1/3}$; cross sections like $A^{2/3}$.
- Nuclear binding energies are on the order of 8 MeV/nucleon.

http://www.uni-mainz.de
Ordinary vs. halo nuclei

- In nuclei, each nucleon moves in the potential generated by the others

- The nuclear size grows as $A^{1/3}$; cross sections like $A^{2/3}$

- Nuclear binding energies are on the order of 8 MeV/nucleon

- Halo nuclei: the last few nucleons “orbit” far from the nuclear “core”

- Characterized by small nucleon binding energies, large radii, large interaction cross sections, large E1 transition strengths.

http://www.uni-mainz.de
Halo nuclei: history & examples
Halo nuclei: history & examples

- 11Li identified as “halo nucleus” in 1985
Halo nuclei: history & examples

- 11Li identified as “halo nucleus” in 1985

- 22C, $\langle r_0^2 \rangle^{1/2} = 5.4(9)$ fm

- Subsequently remeasured, $\langle r_0^2 \rangle^{1/2} = 3.44(8)$ fm
Halo nuclei: history & examples

- 11Li identified as “halo nucleus” in 1985

- 22C, $<r_0^2>^{1/2}=5.4(9)$ fm

- Subsequently remeasured, $<r_0^2>^{1/2}=3.44(8)$ fm

- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei
Halo nuclei: history & examples

- ^{11}Li identified as “halo nucleus” in 1985

- ^{22}C, $<r_0^2>^{1/2}=5.4(9)$ fm

- Subsequently remeasured, $<r_0^2>^{1/2}=3.44(8)$ fm

- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei

- “Open quantum systems”: physics beyond mean field
Halo nuclei: history & examples

- ^{11}Li identified as “halo nucleus” in 1985

- ^{22}C, $<r^2>^{1/2}=5.4(9)$ fm

- Subsequently remeasured, $<r^2>^{1/2}=3.44(8)$ fm

- Often Borromean systems

- Understanding essential to modeling of neutron-rich nuclei

- “Open quantum systems”: physics beyond mean field

- Universality: common features of weakly-bound quantum systems
Halo nuclei: history & examples

http://nupecc.org
Halo EFT

\[\lambda \gg R_{\text{core}}; \lambda \lesssim R_{\text{halo}} \]

Bertulani, Hammer, van Kolck, NPA (2003);
Bedaque, Hammer, van Kolck, PLB (2003);
Halo EFT

- Define $R_{\text{halo}} = \langle r^2 \rangle^{1/2}$. Seek EFT expansion in $R_{\text{core}}/R_{\text{halo}}$. Valid for $\lambda \leq R_{\text{halo}}$

- Typically $R \equiv R_{\text{core}} \sim 2$ fm. And since $\langle r^2 \rangle$ is related to the neutron separation energy we are looking for systems with neutron separation energies of order 1 MeV or less

- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of Halo EFT

Predicting dissociation

\[M = \frac{e Z g_0 2 m_R}{\gamma_0^2 + (p - \frac{k}{A})^2} \]

\[\gamma_0 = \sqrt{2 m_R S_{1n}} \]

\[p = \sqrt{2 m_R E} \]

\[E_1 \propto \int_0^\infty dr \, j_1(pr) ru_0(r); \quad u_0(r) = A_0 e^{-\gamma_0 r} \]

Chen, Savage (1999)
Predicting dissociation

- Leading order: no FSI $\Rightarrow \gamma_0$ is only free parameter = 0.16 fm$^{-1}$ for 19C

\[M = \frac{eZg_02m_R}{\gamma_0^2 + (p - \frac{k}{A})^2} \]
\[\gamma_0 = \sqrt{2m_RS_{1n}} \]
\[p = \sqrt{2m_RE} \]

\[E1 \propto \int_0^\infty dr j_1(pr)ru_0(r); \quad u_0(r) = A_0e^{-\gamma_0r} \]

Chen, Savage (1999)
Predicting dissociation

- Leading order: no FSI ⇒ γ_0 is only free parameter = 0.16 fm$^{-1}$ for 19C

$$\mathcal{M} = \frac{eZg_02m_R}{\gamma_0^2 + (p - \frac{k}{A})^2} \quad \gamma_0 = \sqrt{2m_RS_{1n}}$$

$$p = \sqrt{2m_RE}$$

$$\text{E1} \propto \int_0^{\infty} dr \, j_1(pr)ru_0(r); \quad u_0(r) = A_0e^{-\gamma_0r}$$

$$\frac{dB(E1)}{e^2dE} = \frac{6m_RZ^2}{\pi^2} \frac{A^2}{A_0^2} \frac{p^3}{(\gamma_0^2 + p^2)^2}$$

Universal E1 strength formula for S-wave halos
Predicting dissociation

- Leading order: no FSI $\Rightarrow \gamma_0$ is only free parameter $= 0.16 \text{ fm}^{-1}$ for ^{19}C

$$\mathcal{M} = \frac{eZg_02m_R}{\gamma_0^2 + (p - \frac{k}{A})^2} \quad \gamma_0 = \sqrt{2m_RS_{1n}}$$

$$p = \sqrt{2m_RE}$$

$$\text{E1} \propto \int_0^\infty dr j_1(pr)ru_0(r); \quad u_0(r) = A_0e^{-\gamma_0r}$$

$$\frac{dB(E1)}{e^2dE} = \frac{6m_RZ^2}{\pi^2} \frac{A^2}{A_0^2} \frac{p^3}{(\gamma_0^2 + p^2)^2}$$

Universal E1 strength formula for S-wave halos

- Final-state interactions suppressed by $(R_{\text{core}}/R_{\text{halo}})^3$

- Short-distance piece of E1 m.e.: $L_{E1}\sigma^\dagger{\mathbf{E}} \cdot (n \vec{\nabla} c) + \text{h.c.} \sim \left(\frac{R_{\text{core}}}{R_{\text{halo}}}
ight)^4$
Results
Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004
Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004

\[\gamma_{0\rightarrow a_0} \]
Results

Data: Nakamura et al., 1999, 2003; Fukuda et al., 2004
Determine S-wave $^{18}\text{C}-\text{n}$ scattering parameters $\leftrightarrow^{19}\text{C}$ ANC from dissociation data.
\(a = (7.75 \pm 0.35\text{(stat.)} \pm 0.3\text{(EFT)}) \text{ fm}; \)
\(r_0 = (2.6^{+0.6}_{-0.9}\text{(stat.)} \pm 0.1\text{(EFT)}) \text{ fm}. \)
Ab initio \rightarrow Halo EFT \rightarrow Reaction theory

- 11Be is a halo nucleus: last neutron only bound to 10Be by 503 keV. Has a p-wave halo state with $S_{1n}=184$ keV.

- Model Coulomb dissociation of 11Be via sophisticated “Dynamical Eikonal Approximation”: includes nuclear and Coulomb 208Pb-10Be-n potentials

- Use Halo EFT to identify important 10Be-n inputs for reaction-theory calculation: s- and p-wave phase shifts

- Take those from ab initio calculation of Calci et al. based on modern nuclear forces and NCSMC (PRL 117, 242501)

No dependence on interior of 10Be-n potential used
Why is $^7\text{Be}(p,\gamma)$ important?
Why is $^7\text{Be}(p,\gamma)$ important?

- Part of pp chain (pplI)
- Key for predictions flux of solar neutrinos, especially high-energy (^8B) neutrinos
- Accurate knowledge of $^7\text{Be}(p,\gamma)$ needed for inferences from solar-neutrino flux regarding chemical composition of Sun→solar-system formation history
- $S(0)=20.8 \pm 0.7 \pm 1.4$ eV b

"SFII": Adelberger et al. (2010)
This is an extrapolation problem

Thermonuclear reaction rate

\(\propto \langle \nu \sigma \rangle \propto \int_0^\infty dE \exp \left(-\frac{E}{k_B T}\right) E \sigma(E) \)
This is an extrapolation problem

Thermonuclear reaction rate \(\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp \left(-\frac{E}{k_B T} \right) E \sigma(E) \)
This is an extrapolation problem

Thermonuclear reaction rate

\[\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp\left(-\frac{E}{k_B T}\right) E \sigma(E) \]
Thermonuclear reaction rate

\[\propto \langle v \sigma \rangle \propto \int_0^\infty dE \exp \left(-\frac{E}{k_B T} \right) E \sigma(E) \]
This is an extrapolation problem

Thermonuclear reaction rate

\[\propto \langle v\sigma \rangle \propto \int_0^\infty dE \exp \left(-\frac{E}{k_B T} \right) E \sigma(E) \]

\[\sigma(E) = \frac{S(E)}{E} \exp \left(-\pi Z_1 Z_2 \alpha_\text{em} \sqrt{\frac{m_R}{2E}} \right) \]
This is an extrapolation problem

Thermonuclear reaction rate

\[\propto \langle \nu \sigma \rangle \propto \int_0^\infty dE \exp \left(-\frac{E}{k_BT} \right) E \sigma(E) \]

\[\sigma(E) = \frac{S(E)}{E} \exp \left(-\pi Z_1 Z_2 \alpha_{em} \sqrt{m_R \over 2E} \right) \]

“Gamow peak”
This is an extrapolation problem

Thermonuclear reaction rate
\[\propto \left\langle \nu \sigma \right\rangle \propto \int_{0}^{\infty} dE \exp \left(-\frac{E}{k_BT} \right) E \sigma(E) \]

\[\sigma(E) = \frac{S(E)}{E} \exp \left(-\pi Z_1 Z_2 \alpha_{em} \sqrt{\frac{m_R}{2E}} \right) \]

- E1 capture: \(^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma\)
- Energies of relevance 20 keV

“Gamow peak”
Status as in “Solar Fusion II”

- Energies of relevance ≈ 20 keV
- There dominated by 7Be-p separations ~ 10s of fm
- Below narrow 1^+ resonance proceeds via s- and d-wave direct capture
- Energy dependence due to interplay of bound-state properties, Coulomb, strong ISI
- SF II central value used energy-dependence from Descouvemont’s ab initio eight-body calculation. Errors from consideration of energy-dependence in a variety of “reasonable models”
Capture to \(p \)-wave halo in EFT

- At LO: \(p \)-wave 1\(n \) halo described solely by its ANC and binding energy

\[
u_1(r) = A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r} \right)
\]

- Capture to the \(p \)-wave state proceeds via the one-body \(E1 \) operator: “external direct capture”

\[
E1 \propto \int_0^\infty dr \: u_0(r) r u_1(r); \quad u_0(r) = 1 - \frac{r}{a}
\]

- NLO: piece of the amplitude representing capture at short distances, represented by a contact operator ⇒ there is an LEC that must be fit
NLO for $^7\text{Be}(p,\gamma)$

- LO calculation: ISI in $S=2$ & $S=1$ into p-wave bound state. Scattering wave functions are linear combinations of Coulomb wave functions F_0 and G_0. Bound state wave function = the appropriate Whittaker function.

- We also incorporate a low-lying excited state ($1/2^-$) in ^7Be.

- NLO: piece of the amplitude representing capture at short distances, represented by a contact operator \mathcal{D}; there is an LEC that must be fit.

\[
S(E) = f(E) \sum_s C_s^2 \left[|S_{EC}(E; \delta_s(E)) + \tilde{L}_s S_{SD}(E; \delta_s(E)) + \epsilon_s S_{CX}(E; \delta_s(E))|^2 + |\mathcal{D}(E)|^2 \right]
\]

- ANC's in $^5\text{P}_2$ and $^3\text{P}_2$: A_{5P2} and A_{3P2}

- Scattering lengths and effective ranges in both $^5\text{S}_2$ and $^3\text{S}_1$: a_2, r_2 and a_1, r_1

- Core excitation: determined by ratio of ^8B couplings of $^7\text{Be}^*p$ and $^7\text{Be}-p$ states: ϵ_1

- LECs associated with contact interaction, one each for $S=1$ and $S=2$: L_1 and L_2
Extrapolation to zero energy

\[
\text{pr} \left(\bar{F} \mid D; T; I \right) = \int \text{pr} \left(\bar{g}, \{ \xi_i \} \mid D; T; I \right) \delta(\bar{F} - F(\bar{g}))d\xi_1 \ldots d\xi_5 d\bar{g}
\]
Extrapolation to zero energy

\[\text{pr} \left(\bar{F} \mid D; T; I \right) = \int \text{pr} \left(\bar{g}, \{ \xi_i \} \mid D; T; I \right) \delta(\bar{F} - F(\bar{g})) d\xi_1 \ldots d\xi_5 d\bar{g} \]
Extrapolation to zero energy

\[\text{pr} \left(\bar{F} \mid D; T; I \right) = \int \text{pr} \left(\bar{g}, \{ \xi_i \} \mid D; T; I \right) \delta (\bar{F} - F(\bar{g})) d\xi_1 \ldots d\xi_5 d\bar{g} \]

\[S(0) = 21.33^{+0.66}_{-0.69} \text{ eV b} \]

No N^2LO corrections

Also assessed impact of N^3LO contact operator
Extrapolation to zero energy

\[\text{pr} \left(\bar{F} \middle| D; T; I \right) = \int \text{pr} \left(\vec{g}, \{ \xi_i \} \middle| D; T; I \right) \delta(\bar{F} - F(\vec{g})) d\xi_1 \ldots d\xi_5 d\vec{g} \]

\[S(0) = 21.33^{+0.66}_{-0.69} \text{ eV b} \]

No N^2LO corrections

Also assessed impact of N^3LO contact operator

Some remaining uncertainty due to $^8\text{B} S_{1p}$

Uncertainty reduced by factor of two: model selection
Ongoing work along these lines

- Simultaneous fit to $^7\text{Be}+p$ scattering data: requires inclusion of resonances (TRIUMF experiment)

- Same techniques applied to $^3\text{He}(^4\text{He},\gamma)$

- Coulomb dissociation: better reaction theory and connection to \textit{ab initio} structure

- Rotational states as explicit degrees of freedom

- Gaussian process models for EFT truncation errors

- χEFT truncation errors in nuclear & neutron matter

- Parameter estimation for 3NFs in χEFT
The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements.

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations.....There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation.....However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Physical Review A Editorial, 29 April 2011
One thing is certain.....

The purpose of this Editorial is to discuss the importance of including uncertainty estimates in papers involving theoretical calculations of physical quantities.

It is not unusual for manuscripts on theoretical work to be submitted without uncertainty estimates for numerical results. In contrast, papers presenting the results of laboratory measurements would usually not be considered acceptable for publication in Physical Review A without a detailed discussion of the uncertainties involved in the measurements.

The question is to what extent can the same high standards be applied to papers reporting the results of theoretical calculations.....There are many cases where it is indeed not practical to give a meaningful error estimate for a theoretical calculation....However, there is a broad class of papers where estimates of theoretical uncertainties can and should be made.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

1. If the authors claim high accuracy, or improvements on the accuracy of previous work.
2. If the primary motivation for the paper is to make comparisons with present or future high precision experimental measurements.
3. If the primary motivation is to provide interpolations or extrapolations of known experimental measurements.

Bayesian Uncertainty Quantification:
Errors for Your EFT
Theorists Anonymous
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on your theory
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on your theory
- Make a searching and fearless inventory of errors
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on your theory
- Make a searching and fearless inventory of errors
- Acknowledge your mistakes
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on your theory
- Make a searching and fearless inventory of errors
- Acknowledge your mistakes
- Make amends for those mistakes
Theorists Anonymous

- Admit that you have a problem: your theory has uncertainties
- Acknowledge the existence of a higher power
- Seek to understand its impact on your theory
- Make a searching and fearless inventory of errors
- Acknowledge your mistakes
- Make amends for those mistakes
- Help others who must deal with the same issues

Backup Slides
A Generic EFT

\[g(x) = \sum_{i=0}^{k} A_i(x) x^i \]

\[x = \frac{p}{\Lambda_b} \]
A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, Λ_b.

- EFT expansion for quantity is

$$g(x) = \sum_{i=0}^{k} A_i(x)x^i$$

$$x = \frac{p}{\Lambda_b}$$
A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, \(\Lambda_b \).

- EFT expansion for quantity is

\[
g(x) = \sum_{i=0}^{k} A_i(x) x^i
\]

\[
A_i(x) = a_i(\mu) + f_i(x, \mu)
\]

\[a_i, f_i = O(1) \text{ for } \mu \sim \Lambda_b, x \sim 1\]
A Generic EFT

- Suppose we are interested in a quantity as a function of a momentum, p, that is small compared to some high scale, Λ_b.

- EFT expansion for quantity is

$$ g(x) = \sum_{i=0}^{k} A_i(x) x^i $$

$$ x = \frac{p}{\Lambda_b} $$

$$ A_i(x) = a_i(\mu) + f_i(x, \mu) \quad a_i, f_i = O(1) \text{ for } \mu \sim \Lambda_b, x \sim 1 $$

- $f_i(x, \mu)$ is a calculable function, that encodes IR physics at order i

- a_i is a low-energy constant (LEC): encodes UV physics at order i. Must be fit to data

- Complications: multiple light scales, multiple functions at a given order, skipped orders, ….
Bayes \rightarrow Result
Bayes → Result

- Bayes theorem: \(\text{pr}(\bar{c}|c_0, c_1, \ldots, c_k) = \frac{\text{pr}(c_0, c_1, \ldots, c_k|\bar{c}) \text{pr}(\bar{c})}{\text{pr}(c_0, c_1, \ldots, c_k)} = \mathcal{N} \text{pr}(\bar{c}) \prod_{n=0}^{k} \text{pr}(c_n|\bar{c}) \)
Bayes → Result

- **Bayes theorem:**
 \[
 \text{pr}(\bar{c}|c_0, c_1, \ldots, c_k) = \frac{\text{pr}(c_0, c_1, \ldots, c_k|\bar{c})\text{pr}(\bar{c})}{\text{pr}(c_0, c_1, \ldots, c_k)}
 = \mathcal{N}\text{pr}(\bar{c})\prod_{n=0}^{k}\text{pr}(c_n|\bar{c})
 \]

- **Marginalization:**
 \[
 \text{pr}(c_{k+1}|c_0, c_1, \ldots, c_k) = \int_0^\infty d\bar{c} \text{pr}(c_{k+1}|\bar{c})\text{pr}(\bar{c}|c_0, c_1, \ldots, c_k)
 \]
Bayes → Result

- **Bayes theorem:**\[\Pr(\bar{c}|c_0, c_1, \ldots, c_k) = \frac{\Pr(c_0, c_1, \ldots, c_k|\bar{c})\Pr(\bar{c})}{\Pr(c_0, c_1, \ldots, c_k)} = \mathcal{N}\Pr(\bar{c})\prod_{n=0}^{k}\Pr(c_n|\bar{c}) \]

- **Marginalization:**\[\Pr(c_{k+1}|c_0, c_1, \ldots, c_k) = \int_{0}^{\infty} d\bar{c} \Pr(c_{k+1}|\bar{c})\Pr(\bar{c}|c_0, c_1, \ldots c_k) \]

- This is generic, but the integrals are simple in the case of “Prior A”\[\Pr(\bar{c}|c_0, c_1, \ldots, c_k) \propto \begin{cases} 0 & \text{if } \bar{c} < \max\{c_0, \ldots, c_k\} \\ \frac{1}{\bar{c}^{k+2}} & \text{if } \bar{c} > \max\{c_0, \ldots, c_k\} \end{cases} \]
\[\Pr(c_{k+1}|c_0, c_1, \ldots, c_k) \propto \begin{cases} 1 & \text{if } c_{k+1} < c_{\text{max}} \\ \left(\frac{c_{\text{max}}}{c_{k+1}}\right)^{k+2} & \text{if } c_{k+1} > c_{\text{max}} \end{cases} \]
I don’t like THAT prior!

- Modify Set A to restrict cbar to a finite range, e.g. $A_{[0.25,4]}$

- Set B: give cbar a log-normal prior:
 $$
 \Pr(\bar{c}) = \frac{1}{\sqrt{2\pi \bar{c}\sigma}} e^{-\frac{(\log \bar{c})^2}{2\sigma^2}}
 $$

- Set C:
 $$
 \Pr(c_n | \bar{c}) = \frac{1}{\sqrt{2\pi \bar{c}}} e^{-\frac{c_n^2}{2\bar{c}^2}} ; \Pr(\bar{c}) \propto \frac{1}{\bar{c}} \theta(\bar{c} - \bar{c}_{<}) \theta(\bar{c}_{>} - \bar{c})
 $$

- Same formulas as before can be invoked. Now numerical.

 $$
 \Pr(c_{k+1} | c_0, c_1, \ldots, c_k) = \int_0^\infty d\bar{c} \Pr(c_{k+1} | \bar{c}) \Pr(\bar{c} | c_0, c_1, \ldots c_k)
 $$

 $$
 \Pr(\bar{c} | c_0, c_1, \ldots, c_k) = \mathcal{N} \Pr(\bar{c}) \prod_{n=0}^{k} \Pr(c_n | \bar{c})
 $$

- You don’t like these? Pick your own and follow the rules…

- First omitted term approximation
Λ_b determines the size of the c_n’s. Choose it too big, and they’ll be too big. Choose it too small, they’ll be too small. And progressively so as one moves to higher and higher order.

We have a theory for \(\text{pr}(c_n|c_0, c_1, \ldots, c_k) \): now use Bayes’ theorem to see how (im)probable are the c_n’s that dimensionful EFT coefficients (b_n’s) produce for a given Λ_b.
Λ_b determines the size of the c_n’s. Choose it too big, and they’ll be too big. Choose it too small, they’ll be too small. And progressively so as one moves to higher and higher order.

We have a theory for \(\text{pr}(c_n|c_0, c_1, \ldots, c_k) \): now use Bayes’ theorem to see how (im)probable are the c_n’s that dimensionful EFT coefficients (b_n’s) produce for a given Λ_b.

At one energy:

\[
\text{pr}(\Lambda_b|b_2, \ldots, b_k) \propto \frac{1}{\Lambda_b} \left(\frac{\Lambda_b^{k+2}}{(k+1)\langle b^2 \rangle} \right)^{\frac{k-1}{2}}
\]

(NLO: k=2, NNLO: k=3, N^3LO: k=4, etc.)
Λ_b determines the size of the c_n’s. Choose it too big, and they’ll be too big. Choose it too small, they’ll be too small. And progressively so as one moves to higher and higher order.

- We have a theory for \(\text{pr}(c_n|c_0, c_1, \ldots, c_k) \) now use Bayes’ theorem to see how (im)probable are the c_n’s that dimensionful EFT coefficients (b_n’s) produce for a given \(\Lambda_b \).

At one energy:

\[
\text{pr}(\Lambda_b|b_2, \ldots, b_k) \propto \frac{1}{\Lambda_b} \left(\frac{\Lambda_b^{k+2}}{(k+1)\langle b^2 \rangle} \right)^{\frac{k-1}{2}}
\]

(NLO: k=2, NNLO: k=3, N^3LO: k=4, etc.)

Using 5 energies (and 2 angles):
BREAKDOWN-SCALE INFERENCES

- \(\Lambda_b \) determines the size of the \(c_n \)'s. Choose it too big, and they'll be too big. Choose it too small, they'll be too small. And progressively so as one moves to higher and higher order.

- We have a theory for \(\text{pr}(c_n|c_0, c_1, \ldots, c_k) \): now use Bayes’ theorem to see how (im)probable are the \(c_n \)'s that dimensionful EFT coefficients (\(b_n \)'s) produce for a given \(\Lambda_b \).

At one energy:

\[
\text{pr}(\Lambda_b|b_2, \ldots, b_k) \propto \frac{1}{\Lambda_b} \left(\frac{\Lambda_b^{k+2}}{(k+1)(\langle b^2 \rangle)} \right)^{\frac{k-1}{2}}
\]

(NLO: \(k=2 \), NNLO: \(k=3 \), \(N^3\text{LO} \): \(k=4 \), etc.)

Using 17 energies (and 7 angles):
\(\Lambda_b \) determines the size of the \(c_n \)'s. Choose it too big, and they’ll be too big. Choose it too small, they’ll be too small. And progressively so as one moves to higher and higher order.

We have a theory for \(\text{pr}(c_n|c_0, c_1, \ldots, c_k) \): now use Bayes’ theorem to see how (im)probable are the \(c_n \)'s that dimensionful EFT coefficients (\(b_n \)'s) produce for a given \(\Lambda_b \).

At one energy:

\[
\text{pr}(\Lambda_b|b_2, \ldots, b_k) \propto \frac{1}{\Lambda_b} \left(\frac{\Lambda_b^{k+2}}{(k+1)
\langle b^2 \rangle} \right)^{\frac{k-1}{2}}
\]

(NLO: \(k=2 \), NNLO: \(k=3 \), \(N^3 \text{LO} \): \(k=4 \), etc.)

Using 17 energies (and 7 angles):

\(R=1.2 \text{ fm} \)
But we don’t have 119 independent data points.

We have a function for each observable at each order.

Can we understand the properties of these functions, so we can do Λ_b inference and compute success ratios rigorously?

$$\sigma(E) = \sigma_0(E) \left[1 + c_2(E)x^2 + c_3(E)x^3 + c_4(E)x^4 + c_5(E)x^5 \right]$$
OBSERVATIONS AND QUESTIONS

- c_n’s do not grow or shrink with n: good Λ_b choice
- Bounded functions, mostly between -2 and 2
- Each “takes a turn” at being largest
- Not oscillating quickly in this energy range

$\Lambda_b = 600$ MeV
OBSERVATIONS AND QUESTIONS

- c_n’s do not grow or shrink with n: good Λ_b choice
- Bounded functions, mostly between -2 and 2
- Each “takes a turn” at being largest
- Not oscillating quickly in this energy range

$\Lambda_b = 400$ MeV
OBSERVATIONS AND QUESTIONS

- c_n's do not grow or shrink with n: good Λ_b choice
- Bounded functions, mostly between -2 and 2
- Each “takes a turn” at being largest
- Not oscillating quickly in this energy range

$\Lambda_b = 600$ MeV
OBSERVATIONS AND QUESTIONS

- c_n’s do not grow or shrink with n: good Λ_b choice
- Bounded functions, mostly between -2 and 2
- Each “takes a turn” at being largest
- Not oscillating quickly in this energy range

Physics questions:
- Do curves all fluctuate around zero with some common variance?
- What is the correlation length? Is it different at each order?

$\Lambda_b=600$ MeV
Coulomb dissociation of halo nuclei

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus

- Do with different Z, different nuclear sizes, different energies to test systematics
Coulomb dissociation of halo nuclei

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus

- Do with different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. $b \gg R_{\text{target}}$)

\[
\frac{d\sigma_C}{2\pi bdb} = \sum \int \frac{dE_\gamma}{E_\gamma} n_{\pi L}(E_\gamma, b) \sigma_{\pi L}^{\gamma L}(E_\gamma)
\]

- $n_{\pi L}(E_\gamma, b)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.
Coulomb dissociation of halo nuclei

- Coulomb dissociation: collide halo nucleus (we hope peripherally) with a high-Z nucleus

- Do with different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. $b \gg R_{\text{target}}$)

$$\frac{d\sigma_C}{2\pi b db} = \sum_{\pi L} \int \frac{dE_\gamma}{E_\gamma} n_{\pi L}(E_\gamma, b) \sigma^\pi_L(E_\gamma)$$

- $n_{\pi L}(E_\gamma, b)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus.

- $\sigma^\pi_L(E_\gamma)$ can then be extracted: it’s the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity πL.
The multi-dimensional Halo EFT space

N_n N_p L

Single-neutron halos

- (s-wave) $d, ^{19}C$
- (p-wave) 8Li
The multi-dimensional Halo EFT space

- Two-neutron halos (s-wave)
 - ^{11}Li, ^{14}Be, ^{22}C

- Two-neutron halos (p-wave)
 - ^6He

- Single-neutron halos (s-wave)
 - d, ^{19}C

- Single-neutron halos (p-wave)
 - ^8Li
The multi-dimensional Halo EFT space

- Single-neutron halos (p-wave): ^{8}Li
- Single-neutron halos (s-wave): $^{17}\text{F}^*$, ^{11}Li, ^{14}Be, ^{22}C
- Two-neutron halos (p-wave): ^6He
- Two-neutron halos (s-wave): ^{10}Li, ^{14}Be, ^{22}C
- Single-proton halos (p-wave): ^8B
- Single-proton halos (s-wave): ^{19}C
The multi-dimensional Halo EFT space

- Single-neutron halos
 - (p-wave) 8Li
 - (s-wave) 8B

- Two-neutron halos
 - (s-wave) 11Li, 14Be, 22C
 - (p-wave) 6He

- Single-proton halos
 - (s-wave) 17F*
 - (p-wave) 3Li, 19C

Plus complementary direction: N_α
E.g. 9Be, 12C*, etc.
Lagrangian for s- and p-wave states

\[\mathcal{L} = c^\dagger \left(i \partial_t + \frac{\nabla^2}{2M} \right) c + n^\dagger \left(i \partial_t + \frac{\nabla^2}{2m} \right) n + \sigma^\dagger \left[\eta_0 \left(i \partial_t + \frac{\nabla^2}{2M_{nc}} \right) + \Delta_0 \right] \sigma + \pi^\dagger_j \left[\eta_1 \left(i \partial_t + \frac{\nabla^2}{2M_{nc}} \right) + \Delta_1 \right] \pi_j - g_0 \left[\sigma n^\dagger c^\dagger + \sigma^\dagger n c \right] - \frac{g_1}{2} \left[\pi^\dagger_j (n \overset{\rightharpoonup}{\nabla}_j c) + (c^\dagger \overset{\rightharpoonup}{\nabla}_j n^\dagger) \pi_j \right] - \frac{g_1}{2} \frac{M - m}{M_{nc}} \left[\pi^\dagger_j \overset{\rightharpoonup}{\nabla}_j (n c) - \overset{\rightharpoonup}{\nabla}_j (n^\dagger c^\dagger) \pi_j \right] + \ldots, \]

- c, n: “core”, “neutron” fields. c: boson, n: fermion
- \(\sigma, \pi_j \): S-wave and P-wave fields
- Minimal substitution generates leading EM couplings

s-wave: Kaplan, Savage, Wise (1998); van Kolck (1999); Birse, Richardosn, McGovern 1999
Dressing the s-wave state

- σ_{nc} coupling g_0 of order R_{halo}, nc loop of order $1/R_{\text{halo}}$. Therefore need to sum all bubbles:

$$D_{\sigma}(p) = \frac{1}{\Delta_0 + \eta_0 [p_0 - \mathbf{p}^2/(2M_{nc})]} - \Sigma_{\sigma}(p)$$

$$\Sigma_{\sigma}(p) = -\frac{g_0^2 m_R}{2\pi} \left[\mu + i\sqrt{2m_R \left(p_0 - \frac{\mathbf{p}^2}{2M_{nc}} + i\eta \right)} \right]$$

$$t = \frac{2\pi}{m_R} \left(\frac{1}{a_0} - \frac{1}{2} r_0 k^2 + i k \right)$$

$$D_{\sigma}(p) = \frac{2\pi \gamma_0}{m_R^2 g_0^2} \frac{1}{1 - r_0 \gamma_0} \frac{1}{p_0 - \frac{\mathbf{p}^2}{2M_{nc}} + B_0} + \text{regular}$$

Counting in S waves:
- $a_0 \sim R_{\text{halo}} \sim 1/\gamma_0$;
- $r_0 \sim R_{\text{core}}$.
- $r_0 = 0$ at LO.
One-slide p-wave review

\[\langle k| t_1 | k' \rangle = - \frac{6\pi}{m_R} - \frac{\mathbf{k} \cdot \mathbf{k}'}{\frac{1}{a_1}} + \frac{1}{2} r_1 k^2 - ik^3 \]

Bethe (1949)
One-slide p-wave review

- For a short-ranged potential, if $kR \ll 1$:

\[
\langle \mathbf{k}|t_1|\mathbf{k}' \rangle = -\frac{6\pi}{m_R} \left(\frac{k \cdot k'}{a_1} + \frac{1}{2} r_1 k^2 - ik^3 \right)
\]

Bethe (1949)
One-slide p-wave review

- For a short-ranged potential, if $kR \lesssim 1$:

$$\langle k|t_1|k' \rangle = -\frac{6\pi}{m_R} \left(\frac{k \cdot k'}{a_1} + \frac{1}{2} r_1 k^2 - i k^3 \right)$$

Bethe (1949)

- “Natural case” $a_1 \sim R^3; r_1 \sim l/R. \Rightarrow t_1 \sim R^3 k^2$, so small cf. $t_0 \sim l/k$ (N^3LO)
One-slide p-wave review

- For a short-ranged potential, if $kR \ll 1$:

 \[
 \langle k | t_1 | k' \rangle = -\frac{6\pi}{m_R} \frac{k \cdot k'}{\frac{1}{a_1} + \frac{1}{2} r_1 k^2 - i k^3}
 \]

 \[\text{Bethe (1949)}\]

- “Natural case” $a_1 \sim R^3; r_1 \sim 1/R \Rightarrow t_1 \sim R^3k^2$, so small cf. $t_0 \sim 1/k$ (N^3LO)

- But what if there is a low-energy p-wave resonance?
One-slide p-wave review

- For a short-ranged potential, if $kR \ll 1$:

$$\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{6\pi}{m_R} \left(\frac{1}{a_1} + \frac{1}{2} r_1 k^2 - ik^3 \right) \frac{\mathbf{k} \cdot \mathbf{k}'}{a_1} + \frac{1}{2} r_1 k^2 - ik^3$$

Bethe (1949)

- “Natural case” $a_1 \sim R^3; r_1 \sim 1/R. \Rightarrow t_1 \sim R^3 k^2$, so small cf. $t_0 \sim 1/k$ (N³LO)

- But what if there is a low-energy p-wave resonance?

- Causality says $r_1 \preceq -1/R$
One-slide p-wave review

- For a short-ranged potential, if \(kR \ll 1 \):

\[
\langle \mathbf{k} | t_1 | \mathbf{k}' \rangle = -\frac{6\pi}{m_R} \frac{k \cdot k'}{-\frac{1}{a_1} + \frac{1}{2} r_1 k^2 - i\kappa^3} \quad \text{Bethe (1949)}
\]

- “Natural case” \(a_1 \sim R^3; r_1 \sim 1/R \). \(\Rightarrow t_1 \sim R^3 k^2 \), so small cf. \(t_0 \sim 1/k \) (\(N^3\text{LO} \))

- But what if there is a low-energy p-wave resonance?

- Causality says \(r_1 \preceq -1/R \)

- So low-energy resonance/bound state would seem to have to arise due to cancellation between \(-1/a_1 \) and \(1/2 r_1 k^2 \) terms.

- \(a_1 \sim R/M_{\text{lo}}^2 \) gives \(k_R \sim M_{\text{lo}} \)

Wigner (1955); Hammer & Lee (2009); Nishida (2012)

Dressing the p-wave state

Proceed similarly for p-wave state as for s-wave state

\[
D_\pi(p) = \frac{1}{\Delta_1 + \eta_1[p_0 - p^2/(2M_{nc})] - \Sigma_\pi(p)}
\]

Here both \(\Delta_1\) and \(g_1\) are mandatory for renormalization at LO

\[
\Sigma_\pi(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2\mu + i k} \right]
\]

Reproduces ERE. But here (cf. s waves) cannot take \(r_1=0\) at LO.
Dressing the p-wave state

- Proceed similarly for p-wave state as for s-wave state

\[D_\pi(p) = \frac{1}{\Delta_1 + \eta_1[p_0 - p^2/(2M_{nc})] - \Sigma_\pi(p)} \]

- Here both \(\Delta_1 \) and \(g_1 \) are mandatory for renormalization at LO

\[\Sigma_\pi(p) = -\frac{m_R g_1^2 k^2}{6\pi} \left[\frac{3}{2} \mu + ik \right] \]

- Reproduces ERE. But here (cf. s waves) cannot take \(r_1 = 0 \) at LO

- If \(a_1 > 0 \) then pole is at \(k = i\gamma_1 \) with \(B_1 = \gamma_1^2/(2m_R) \):

\[D_\pi(p) = -\frac{3\pi}{m_R^2 g_1^2} \frac{2}{r_1 + 3\gamma_1} \frac{i}{p_0 - p^2/(2M_{nc}) + B_1} + \text{regular} \]
A narrow p-wave resonance/bound state

A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3; r_1 \sim M_{lo}$

- Here we adopt $r_1 \sim 1/R, a_1 \sim M_{lo}^2/R$
A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3; r_1 \sim M_{lo}$ \cite{Bertulani2002}

- Here we adopt $r_1 \sim 1/R, a_1 \sim M_{lo}^2/R$ \cite{Bedaque2003}

- So, off resonance, $\text{Re}[t^{-1}] > \text{Im}[t^{-1}]$: phase shifts are $O(M_{lo}R)$ and scattering is perturbative away from resonance

\[
\langle k|t_1|k' \rangle = -\frac{12\pi}{m_R r_1} \frac{k \cdot k'}{k^2 - k_R^2} \quad k_R^2 = \frac{2}{a_1 r_1}
\]
A narrow p-wave resonance/bound state

- First EFT paper to do this assigned $a_1 \sim 1/M_{lo}^3; r_1 \sim M_{lo}$ \cite{Bertulani:2002}. \cite{Bertulani:2002}

- Here we adopt $r_1 \sim l/R, a_1 \sim M_{lo}^2/R$ \cite{Bedaque:2003}. \cite{Bedaque:2003}

- So, off resonance, $\text{Re}[t^{-1}] \gg \text{Im}[t^{-1}]$: phase shifts are $O(M_{lo}R)$ and scattering is perturbative away from resonance

\[
\langle k|t_1|k'\rangle = -\frac{12\pi}{m_R r_1} \frac{k \cdot k'}{k^2 - k_R^2}
\]

- Resonance width is $\sim E_R k_R/r_1$, so it is parametrically narrow. Need to resum width if $k^2 - k_R^2$ gets small
P-wave FSI in $\gamma_{E1} + ^{11}\text{Be} \rightarrow ^{10}\text{Be} + n$

- $^{11}\text{Be}: 1/2^- (P\text{-wave})$ state bound by 0.18 MeV
P-wave FSI in $\gamma_{E1} + ^{11}\text{Be} \rightarrow ^{10}\text{Be} + n$

- ^{11}Be: $1/2^-$ (P-wave) state bound by 0.18 MeV
- $^{10}\text{Be} + n$ FSI “natural” in spin-3/2 channel, i.e. suppressed by three orders
P-wave FSI in $\gamma_{E1} + \text{^{11}Be} \rightarrow \text{^{10}Be} + n$

- $\text{^{11}Be}$: $1/2^-$ (P-wave) state bound by 0.18 MeV
- $\text{^{10}Be} + n$ FSI “natural” in spin-3/2 channel, i.e. suppressed by three orders
- FSI in spin-1/2 channel: stronger, but “kinematic” nature of P-wave bound state means P-wave scattering is perturbative away from it. EFT analysis in terms of scales:
 \[k^3 \cot \delta_1 = -1/2 \, r_1 \, (k^2 + \gamma_1^2) \Rightarrow \delta_1 \sim R_{\text{core}}/R_{\text{halo}} \text{ if } k \sim 1/R_{\text{halo}} \sim \gamma_1. \]

P-wave FSI in $\gamma_{E1} + {^{11}\text{Be}} \rightarrow {^{10}\text{Be}} + n$

- ^{11}Be: $1/2^-$ (P-wave) state bound by 0.18 MeV

- $^{10}\text{Be} + n$ FSI “natural” in spin-3/2 channel, i.e. suppressed by three orders

- FSI in spin-1/2 channel: stronger, but “kinematic” nature of P-wave bound state means P-wave scattering is perturbative away from it. EFT analysis in terms of scales:

 $$k^3 \cot \delta_1 \sim -1/2 \ r_1 \ (k^2 + \gamma_1^2) \Rightarrow \delta_1 \sim R_{\text{core}}/R_{\text{halo}} \text{ if } k \sim 1/R_{\text{halo}} \sim \gamma_1.$$

- Need both γ_1 and $r_1 \equiv A_1$ at NLO in this observable. A_0 also becomes a free parameter at NLO; fit it to Coulomb dissociation data
Coulomb dissociation of 11Be: result

Data: Palit et al., 2003

- Reasonable convergence
- Information on value of r_0 through fitting of A_0:
 $r_0=2.7$ fm
Coulomb dissociation of 11Be: result

- Reasonable convergence
- Information on value of r_0 through fitting of A_0: $r_0 = 2.7$ fm

Need P-wave effective range
- Here value of r_1 used to fit $B(E1; 1/2^+ \rightarrow 1/2^-)$ works. $r_1 = -0.66$ fm$^{-1}$

Data: Palit et al., 2003
Coulomb dissociation of 11Be: result

Data: Palit et al., 2003

- Reasonable convergence
- Information on value of r_0 through fitting of A_0: $r_0=2.7$ fm
- Need P-wave effective range
 - Here value of r_1 used to fit $B(E1:1/2^+\rightarrow 1/2^-)$ works. $r_1=-0.66$ fm$^{-1}$

NLO: $(<r_c^2>+<r_{Be}^2>)^{1/2}=2.44$ fm
Coulomb dissociation of ^{11}Be: result

- Reasonable convergence
- Information on value of r_0 through fitting of A_0:
 $$r_0 = 2.7 \text{ fm}$$
- Need P-wave effective range
 - Here value of r_1 used to fit $B(E1; 1/2^+ \rightarrow 1/2^-)$ works.
 $$r_1 = -0.66 \text{ fm}^{-1}$$

NLO: $(<r_c^2> + <r_{Be}^2>)^{1/2} = 2.44 \text{ fm}$

Use of ab initio input, e.g. for ANC?

Data: Palit et al., 2003
$^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$

- ^7Li ground state is $3/2^-$: S-wave n scattering in 5S_2 and 3S_1

\[a_{S=2} \sim R_{\text{halo}}; \ a_{S=1} \sim R_{\text{core}} \]

![Energy level diagram with transitions and energy levels labeled]

\[^3\text{H} + ^4\text{He} \]
$^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$

- ^7Li ground state is $3/2^{-}$: S-wave n scattering in 5S_2 and 3S_1

- $a_{S=2} = -3.63(5)$ fm, $a_{S=1} = 0.87(7)$ fm

- $a_{S=2} \sim R_{\text{halo}}$; $a_{S=1} \sim R_{\text{core}}$

![Energy level diagram](attachment:image.png)
$^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$

- ^7Li ground state is $3/2^-$: S-wave n scattering in 5S_2 and 3S_1
- $a_{S=2} = -3.63(5)$ fm, $a_{S=1} = 0.87(7)$ fm

 $a_{S=2} \sim R_{\text{halo}}$; $a_{S=1} \sim R_{\text{core}}$

\[3^+ \quad 0.22 \quad n + ^7\text{Li} \]
\[1^+ \quad -1.05 \]
\[2^+ \quad -2.03 \]

$^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$
$^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$

- ^7Li ground state is $3/2^-$: S-wave n scattering in 5S_2 and 3S_1
- $a_{S=2} = -3.63(5)$ fm, $a_{S=1} = 0.87(7)$ fm

 $$a_{S=2} \sim R_{\text{halo}}; \quad a_{S=1} \sim R_{\text{core}}$$

- LO calculation: $S=2$ (with ISI) and $S=1$ into P-wave bound state

$$E1 \propto \int_0^\infty dr \: u_0(r)ru_1(r);$$

$$u_0(r) = 1 - \frac{r}{a}; \quad u_1(r) = A_1 \exp(-\gamma_1r) \left(1 + \frac{1}{\gamma_1r}\right)$$
Fixing ^8Li parameters

- ^8Li ground state is 2^+: both $^5\text{P}_2$ and $^3\text{P}_2$ components
- ^8Li first excited state: 1^+, bound by 1.05 MeV

Zhang, Nollett, Phillips, PRC (2014)
c.f. Rupak, Higa, PRL 106, 222501 (2011);
Fernando, Higa, Rupak, EPJA 48, 24 (2012)
Fixing ^8Li parameters

- ^8Li ground state is 2^+: both $^5\text{P}_2$ and $^3\text{P}_2$ components
- ^8Li first excited state: 1^+, bound by 1.05 MeV
- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\Rightarrow \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV. $\gamma_1 \sim 1/R_{\text{halo}}$

Zhang, Nollett, Phillips, PRC (2014)
e.f. Rupak, Higa, PRL 106, 222501 (2011);
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

\[
\begin{array}{c}
3^+ & 0.22 \\
1^+ & -1.05 \\
2^+ & -2.03 \\
\end{array}
\]

\[
\begin{array}{c}
^3\text{H} + ^4\text{He} & 2.47 \\
1/2^- & 0.478 \\
3/2^- & 0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{n} + ^7\text{Li} \\
^8\text{Li} \\
\end{array}
\]
Fixing 8Li parameters

- 8Li ground state is 2^+: both 5P_2 and 3P_2 components
- 8Li first excited state: 1^+, bound by 1.05 MeV
- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\Rightarrow \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV.
- Also include $1/2^-$ excited state of 7Li as explicit d.o.f.

Zhang, Nollett, Phillips, PRC (2014)

$\gamma_1 \sim 1/R_{\text{halo}}$
Fixing ^8Li parameters

- ^8Li ground state is 2^+: both $^5\text{P}_2$ and $^3\text{P}_2$ components

- ^8Li first excited state: 1^+, bound by 1.05 MeV

- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\Rightarrow \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV.

- Also include $1/2^-$ excited state of ^7Li as explicit d.o.f.

- Need to also fix $2+2$ p-wave ANCs at LO. (1+2 ANCs for $|7\text{Li}^*>|n>$ component.)

Zhang, Nollett, Phillips, PRC (2014)
c.f. Rupak, Higa, PRL 106, 222501 (2011);
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

$\gamma_1 \sim 1/R_{\text{halo}}$
Fixing 8Li parameters

- 8Li ground state is 2^+: both 5P_2 and 3P_2 components
- 8Li first excited state: 1^+, bound by 1.05 MeV
- Input at LO: $B_1 = 2.03$ MeV; $B_1^* = 1.05$ MeV $\Rightarrow \gamma_1 = 58$ MeV; $\gamma_1^* = 42$ MeV.
- Also include $1/2^-$ excited state of 7Li as explicit d.o.f.
- Need to also fix $2+2$ p-wave ANCs at LO. ($1+2$ ANCs for $|7Li^*>|n>$ component.)
- VMC calculation with AV18 + UIX gives all ANCs: infer $r_1 = -1.43$ fm$^{-1}$

Zhang, Nollett, Phillips, PRC (2014)

C.f. Rupak, Higa, PRL 106, 222501 (2011);
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

$\gamma_1 \sim 1/R_{\text{halo}}$

R_{core}

Fixing ^8Li parameters

- ^8Li ground state is 2^+: both $^5\text{P}_2$ and $^3\text{P}_2$ components

- ^8Li first excited state: 1^+, bound by 1.05 MeV

- Input at LO: $B_1=2.03$ MeV; $B_1^*=1.05$ MeV $\implies \gamma_1=58$ MeV; $\gamma_1^*=42$ MeV.

- Also include $1/2^-$ excited state of ^7Li as explicit d.o.f.

- Need to also fix $2+2$ p-wave ANCs at LO. ($1+2$ ANCs for $|7\text{Li}^*\rangle|n\rangle$ component.)

- VMC calculation with AV18 + UIX gives all ANCs: $r_1=-1.43$ fm

Zhang, Nollett, Phillips, PRC (2014)

c.f. Rupak, Higa, PRL 106, 222501 (2011);
Fernando, Higa, Rupak, EPJA 48, 24 (2012)

\[\gamma_1 \sim 1/R_{\text{halo}} \]

\[r_1 \sim 1/R_{\text{core}} \]

<table>
<thead>
<tr>
<th></th>
<th>$A_{(3P_2)}$</th>
<th>$A_{(5P_2)}$</th>
<th>$A_{(3P_2^*)}$</th>
<th>$A_{(3P_1^*)}$</th>
<th>$A_{(5P_1^*)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nollett</td>
<td>-0.283(12)</td>
<td>-0.591(12)</td>
<td>-0.384(6)</td>
<td>0.220(6)</td>
<td>0.197(5)</td>
</tr>
<tr>
<td>Trache</td>
<td>-0.284(23)</td>
<td>-0.593(23)</td>
<td></td>
<td>0.187(16)</td>
<td>0.217(13)</td>
</tr>
</tbody>
</table>
LO results for $^{7}\text{Li} + n \rightarrow ^{8}\text{Li} + \gamma_{E1}$

LO results for $^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{\text{EI}}$

$$\frac{\sigma({^5S_2} \rightarrow 2^+) }{\sigma(\rightarrow 2^+)} = 0.95$$

Experiment > 0.86

Barker, 1996
LO results for $^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{E1}$

$$\frac{\sigma(5\, S_2 \rightarrow 2^+) }{\sigma(\rightarrow 2^+)} = 0.95$$

Experiment > 0.86
Barker, 1996

$$\frac{\sigma(\rightarrow 2^+) }{\sigma(\rightarrow 2^+) + \sigma(\rightarrow 1^+)} = 0.89$$

Experiment $= 0.88$
Lynn et al., 1991
LO results for $^7\text{Li} + n \rightarrow ^8\text{Li} + \gamma_{\text{EI}}$

$\frac{\sigma(5S_2 \rightarrow 2^+)}{\sigma(\rightarrow 2^+)} = 0.95$

Experiment > 0.86
Barker, 1996

$\frac{\sigma(\rightarrow 2^+)}{\sigma(\rightarrow 2^+) + \sigma(\rightarrow 1^+)} = 0.89$
Experiment $= 0.88$
Lynn et al., 1991

Dynamics **predicted** through *ab initio* input
Data situation

- 42 data points for $100 \text{ keV} < E_{\text{c.m.}} < 500 \text{ keV}$
 - Junghans (BE1 and BE3)
 - Fillipone
 - Baby
 - Hammache (1998 and 2001)

- Subtract M1 resonance: negligible impact at 500 keV and below

- Deal with CMEs by introducing five additional parameters, ξ_j

- CMEs
 - 2.7% and 2.3%
 - 11.25%
 - 5%
 - 2.2% (1998)
Building the pdf

- Bayes:

\[
\text{pr} \left(\vec{g}, \{\xi_i\} | D; T; I \right) = \text{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) \text{pr} \left(\vec{g}, \{\xi_i\} | I \right),
\]

- First factor: likelihood

\[
\ln \text{pr} \left(D | \vec{g}, \{\xi_i\}; T; I \right) = c - \sum_{j=1}^{N} \frac{\left((1 - \xi_j) S(\vec{g}; E_j) - D_j \right)^2}{2\sigma_j^2},
\]

- Second factor: priors
 - Independent gaussian priors for ξ_j, centered at zero and with width=CME
 - Gaussian priors for $a_{S=1}$ and $a_{S=2}$, based on Angulo et al. measurement
 - All other EFT parameters assigned flat priors, corresponding to natural ranges
 - No s-wave resonance below 600 keV
Marginalizing \rightarrow pdfs

$$\text{pr} \left(g_1, g_2 | D; T; I \right) = \int \text{pr} \left(\vec{g}, \{ \xi_i \} | D; T; I \right) \, d\xi_1 \ldots d\xi_5 \, dg_3 \ldots dg_9$$

- ANCs are highly correlated but sum of squares strongly constrained
- One spin-1 short-distance parameter: $0.33 \, \bar{L}_1 / (\text{fm}^{-1}) - \epsilon_1$
More questions we can answer

42 data points, 7 parameters “fit” to these data, 5 ξ_i’s fixed to their mean values
More questions we can answer

- Is it a “good fit”?

42 data points, 7 parameters “fit” to these data, 5 ξ_i’s fixed to their mean values.
More questions we can answer

- Is it a “good fit”?
- Did the experimentalists understand their systematic errors?
More questions we can answer

- Is it a “good fit”?
- Did the experimentalists understand their systematic errors?
- Are there parameters that are not well constrained by these data?
Truncation error

- N2LO correction=0 (technically only in absence of excited state)
- EFT s-wave scattering corrections (shape parameter)~0.8%
- E2, M1 contributions < 0.01%, Radiative corrections: ~0.1%
- So first correction is at N3LO, i.e., $\vec{L}_i \rightarrow \vec{L}_i + k^2 \vec{L}'_i$
Planning improvements

Use extrapolant to simulate impact of hypothetical future data that could inform posterior pdf for $S(0)$

Left-to-right: 42 data points all of similar quality to Junghans et al.

A: ANC

S: $a_{S=1}$ and $a_{S=2}$

L: short-distance

Note that 1 keV uncertainty in S_{1p} of 8B may not be negligible effect
A sneak peek at $^3\text{He}(^4\text{He},\gamma)$

Preliminary results from Zhang, Nollett, DP, in preparation.
A sneak peek at 3He(4He,γ)

Zhang, Nollett, DP, in preparation
Halo EFT as a “super model”

- Halo EFT is also the EFT of all the models used to extrapolate the cross section in “Solar Fusion II”
- Differences are sub-% level between 0 and 0.5 MeV
- Parameters generally obey $a \sim 1/R_{\text{halo}}$, $r \sim R_{\text{core}}$, $L \sim R_{\text{core}}$, as expected
- Absolute size of $S(0)$ over-predicted in all models, but curves rescaled in fits for Solar Fusion II