Measurements of the Strong Coupling α_s

- particles and forces
- history of the Strong Interaction
- Quantum-Chromodynamics (QCD) vs. QED
- from quarks to hadrons
- experimental determinations of α_s
- world summary of α_s
- asymptotic freedom at its best...

Dimensions and Structure of Matter

Universe Galaxy 10²¹ m

10¹³ m Solar System

10²⁶ m

107 Earth m

Human 100 m 10⁻¹⁰ m Atom

Atomic Nucleus 10⁻¹⁴ m Nucleon 10⁻¹⁵ m

Quark; Lepton < 10⁻¹⁸ m

dominating force:

gravity

el.-magn.

strong

Measurements of α_s

The "Standard Model" of Particle Physics

... is rather simple and clearly arranged ("übersichtlich"):

Elementary Particles				Elementary Forces		
	G	enerati	on 3		exchange boson	relative strength
Quarka	u	С	t	Strong	g	1
Quarks	d	S	b	elmagn.	γ	1/137
_	ve	v_{μ}	$\nu_{ au}$	Weak	W^{\pm}, Z^0	10-14
Leptons	e	μ	τ	Gravitation	G	10-40

... as well as anti-particles

... describes the unified electro-weak interaction and the Strong force with gauge invariant quantum field theories;

... precisely describes all particle reactions observed to date

... provides a consistent (yet incomplete) picture of the evolution of the very early universe -> cosmology

... explains particle masses through: the Higgs Boson

Measurements of α_s

S.Bethke (MPP Munich)

History of Strong Interactions (1)

- **1932**: discovery of neutrons **1933**: $\vec{\mu} \approx 2.5 \frac{e}{2 m_p} \vec{\sigma} \Rightarrow$ substructure of the protons
- **1947**: discovery of π -mesons and long-living V-particles (K⁰, Λ) in cosmic rays
- **1953**: V-particles produced at accelerators new inner quantum number ("strangeness").
- **1964**: static quark-model; new inner quantum number: colour

Baryon

(p,n, Λ,...)

Meson

(π,K,...)

History of Strong Interactions (2)

- **1964**: static quark model ; new inner quantum number: colour.
- **1969**: dynamic parton model :

- **1973**: concept of asymptotic freedom ; Quantum Chromo Dynamics.
- **1975**: 2-Jet structure in e⁺e⁻ annihilation: confirmation of quark-parton-model.
- **1979**: discovery of gluons in 3-Jet-events of e⁺ e⁻ -annihilations.

3-Jet event recorded with the OPAL Detector (1989-2000)

Measurements of α_s

S.Bethke (MPP Munich)

History of Strong Interactions (3)

1991: exp. signature of the gluon self coupling

 $\frac{10}{10} \text{ QCD } \alpha_{s}(M_{Z}) = 0.118 \pm 0.003$

O [GeV]

0.3

0.1

1990-2000: confirmation of asymptotic freedom

2004: Nobel Prize (concept of A.F.) to D. Gross, H.D. Politzer und F. Wilczek

Measurements of α_s

S.Bethke (MPP Munich)

100

QCD:

- gauge-field theory of Strong Interactions
- underlying gauge group: SU(3) ; non-abelian
- force mediating particles/quanta: gluons
- self-coupling of gluons
- renormalised coupling constant α_s is energy dependent:
- α_s large at small energies (large distances): confinement of quarks
- α_s small at large energies (small distancies): asymptotic freedom of quarks

properties of QED and QCD:

-	QED	QCD
fermions	<i>leptons</i> (<i>e</i> , μ,τ)	quarks (u, d, s, c, b, t)
force couples to	electric charge	<u>3 color-charges</u>
exchange quantum	<i>photon</i> (γ) (carries no charge)	$\frac{gluons(g)}{(carry 2 color charges)} \xrightarrow{g} g \xrightarrow{g}$
coupling "constant"	$\alpha(Q^2=0) = \frac{1}{137}$	$\alpha_s(Q^2 = M_Z^2) \approx 0.12$
free particles	<i>leptons</i> (<i>e</i> , μ,τ)	color neutral bound states of q and \overline{q} Hadrons
theory	perturbation theory up to $O(\!lpha^5)$	perturbation theory up to $O(\alpha_s^4)$
precision achieved	10 ⁻⁶ 10 ⁻⁷	0.1% 20%

why are there no free quarks?

S.Bethke (MPP Munich)

Anatomy of hadronic events in e^+e^- annihilation

- QCD: shower development described by perturbation theory
- Hadronisation: phenomenological models of string-, cluster- or dipole fragmentation
- Decays of unstable hadrons: randomized according to experimental decay tables

Measurements of α_s

energy dependence of coupling "constants":

<u>renormalisation group equation (" β -function")</u> (μ : renormalisation [energy] scale)

• in leading order perturbation theory:

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \alpha_i(\mu) = -\beta_0 \alpha_i^2 \qquad \text{with} \quad \beta_0 = \frac{1}{2\pi} \left[\frac{11}{3} \begin{pmatrix} N_c \equiv 0 \\ N_c \equiv 2 \\ N_c \equiv 3 \end{pmatrix} - \frac{4}{3} \begin{pmatrix} N_{fam} \\ N_{fam} \\ N_f/2 \end{pmatrix} - N_{Higgs} \begin{pmatrix} \frac{1}{10} \\ \frac{1}{6} \\ 0 \end{pmatrix} \right] \xleftarrow{} QED \\ \xleftarrow{} QED \\ \xleftarrow{} QCD$$

or

• integration \Rightarrow

$$\alpha_i(q^2) = \frac{\alpha_i(\mu^2)}{1 + \frac{\beta_0}{2}\alpha_i(\mu^2)\ln\frac{q^2}{\mu^2}}$$

$$\alpha_i(q^2) = \frac{2}{\beta_0 \ln \frac{q^2}{\Lambda^2}}$$

with $\Lambda^2 = \frac{\mu^2}{e^{2/\beta_0 \alpha_s(\mu^2)}}$

QCD:
$$N_c = 3$$
; $N_f = 5$ $\beta_0 = \frac{23}{6\pi}$

QED: $N_c = 0$; $N_{fam} = 3$ $\beta_0 = -\frac{12}{6\pi}$ $\alpha_{0.010}$ $\alpha(M_e) = 1/137$ $\alpha(M_Z) = 1/128$ M_Z

Physics Colloquium, University of Pavia, April 11, 2019

Measurements of α_s

S.Bethke (MPP Munich)

Determination of α_s

possible from all processes where gluons occur:

• e+e-annihilations

- total hadronic production cross section
- hadronic decay widths of the Z^0 and of the τ
- jet rates and shape variables
- deep inelastic lepton-nucleon-scattering
 - scaling violations of structure functions
 - jet rates and shape variables
- proton-(anti-)proton collisions
 - jet rates and shape variables
 - production cross sections
- lattice gauge theory
 - observables calculated on discrete space-time lattice
 normalised to measured hadron masses and spectra

perturbative predictions of physical quantities

$$\mathcal{R}(Q^2) = P_l \sum_n R_n \alpha_s^n$$

$$= P_l \left(R_0 + R_1 \alpha_{\rm s}(\mu^2) + R_2 (Q^2/\mu^2) \alpha_{\rm s}^2(\mu^2) + \dots \right)$$

in n^{th} order perturbation theory

 R_1 : "leading order coefficient" (lo) R_2 : "next to leading coefficient" (nlo) R_3 : "next-next-to leading" (nnlo)

how to determine α_s :

- accurate prediction of observable (perturbative QCD in nlo, nnlo,..)
- precise measurement of observable in (high energy) particle reactions
- matching measurements (hadrons!) to calculations (quarks&gluons)
- determination (fit) of free parameter(s): α_s , (+possible further nuisance params.)

assessment of systematic uncertainties:

- experimental (statistics; detector effects; method biases; ...)
- theoretical (missing perturbative higher orders; non-perturbative effects and parametrisation of hadronisation (quarks -> hadrons); procedural;...) theoretical uncertainties mostly dominate!

example 1: hadronic width of Z⁰ boson

Measurements of α_s

S.Bethke (MPP Munich)

example 2: α_s from jet rates und event shapes:

Measurements of α_s

S.Bethke (MPP Munich)

example 3: α_s from top-quark pair production cross section in hadron-hadron collisions

Measurements of α_s

The ATLAS Detector at the LHC

example 3: α_s from top-quark pair production cross section in hadron-hadron collisions

dominating uncertainty: theoretical (pert.; pdf)

Measurements of α_s

S.Bethke (MPP Munich)

summary of α_s

class averages:

 $\alpha_{\rm s}({\rm Mz}) = 0.1192 \pm 0.0018$

$$\alpha_{s}(Mz) = 0.1188 \pm 0.0011$$

 $\alpha_{\rm s}({\rm Mz}) = 0.1156 \pm 0.0021$

$$\alpha_{\rm s}({\rm Mz}) = 0.1169 \pm 0.0034$$

 $\alpha_s(Mz) = 0.1196 \pm 0.0030$ $\alpha_s(Mz) = 0.1151 \pm 0.0028$

class averages:

 $\alpha_{\rm s}({\rm Mz}) = 0.1192 \pm 0.0018$

$$\alpha_{s}(Mz) = 0.1188 \pm 0.0011$$

 $\alpha_{\rm s}({\rm Mz}) = 0.1156 \pm 0.0021$

$$\alpha_{\rm s}({\rm Mz}) = 0.1169 \pm 0.0034$$

 $\alpha_{\rm s}({\rm Mz}) = 0.1196 \pm 0.0030$ $\alpha_{\rm s}({\rm Mz}) = 0.1151 \pm 0.0028$

Measurements of α_s

S.Bethke (MPP Munich)

summary of running α_s

outlook:

(only?) realistic chances for sub-% total uncertainty of α_s(M_z):
 – improved lattice calculations

– Giga/Tera-Z running at future e+e- colliders like ILC / CLIC / CEPC / FCC-ee

time evolution of world average $\Delta \alpha_s(M_Z)/\alpha_s$:

- 1989:
- 2016:
- future:

- 10 % (G. Altarelli)
 - 1 % (see above)
 - 0.1% (your guess...)

Summary:

- **OCD** is the established gauge field theory of Strong Interaction
- the strong coupling strength, α_s, is one of the fundamental "constants" of nature. It is not given by theory, but must be determined by experiment
- basic constituents of QCD are quarks and gluons, while in experiment, (jets of) hadrons reveal their underlying kinematics
- α_s is determined from a large number of particle reactions spanning energy scales from ~1 GeV to more than 1 TeV, averaging at $\alpha_s(M_Z) = 0.1181 \pm 0.0011$ (total uncertainty of ~1%)
- systematic uncertainties are predominantly theoretical (limited perturbative order; hadronisation; nonperturbative effects)
- \bullet measurements unambiguously prove the specific energy dependence of α_s predicted by QCD: Asymptotic Freedom

 α_s is the least precisely known fundamental coupling, but its energy dependence is the most (only) accurately tested one!

Measurements of α_s