TO SEE A WORLD IN A GRAIN OF SAND WILLIAM BLAKE, AUGURIES OF INNOCENCE

MATERIALS ARE KEY TO SOCIETAL WELL BEING

Human ages are named after materials: stone, bronze, iron, nuclear, silicon...

MATERIALS ARE KEY TO SOCIETAL WELL BEING

We need novel materials for:

- Energy harvesting, conversion, storage, efficiency
- Environmental protection and reparation
- High-tech and high-value industries
- Health care and biomedical engineering
- Pharmaceuticals (crystallization, stability, polytypes)
- Monitoring, provenance, and safety of foods
- Information and communication technologies
- Fundamental science (graphene and 2D materials, topological insulators, entangled spins for quantum computing, high-T_c)
- Experimental science (detectors, sensors, magnets)

THE RISE OF MATERIALS SCIENCE

THE RISE OF SIMULATION SCIENCE

2013 Chemistry Prize

Photo © Harvard University **Martin Karplus**, U.S. and Austrian citizen. Born 1930 in Vienna, Austria.

Photo: S. Fisch **Michael Levitt** Michael Levitt, U.S., British and Israeli citizen. Born 1947 in Pretoria,

Photo: Wikimedia Commons Arieh Warshel, Arieh Warshel, U.S. and Israeli citizen. Born 1940 in Kibbutz Sde-

"The prize focuses on how to evaluate the variation in the energy of the real system in a accurate and efficient way [...]. The Car–Parrinello approach is the leading strategy along this line."

"Simulations are so realistic that they predict the outcome of traditional experiments."

From www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/

Focus Archive PNII Index Image Index Focus Search Previous Story / Next Story / July - December 1998 Archive

Inhomogeneous Electron Gas P. Hohenberg and W. Kohn Phys. Rev. **136**, B864 (9 November 1964) Self-Consistent Equations Including Exchange and Correlation Effects W. Kohn and L. J. Sham Phys. Rev. 140, A1133 (15 November 1965)

Nobel Focus: Chemistry by Computer

21 October 1998

The 1998 Nobel Prize in chemistry recognizes two researchers whose work has allowed chemists to calculate the properties of molecules and solids on computers, without performing experiments in the lab. The basic principles of the calculation scheme were first described in *Physical Review* in the 1960s, and solid state physicists used them for decades before they became important in the chemistry world. The scheme drastically simplifies the solution of the quantum mechanical equations for a system of many electrons, and although approximate, the solutions are accurate enough that chemists can learn about large molecules without getting their hands wet.

Calculations made easy. Localized orbitals in the electronic structure of the $BaTiO_3$ crystal,

calculated using density functional theory, which was invented by 1998 Nobel Laureate Walter Kohn.

Nicola Marzari and David Vanderbilt/Rutgers University

MOST CITED PAPERS IN APS (FROM 1893)

	Journal	# cites	Title	Author(s)
1	PRB (1988)	39190	Development of the Colle-Salvetti Correlation-Energy	Lee, Yang, Parr
2	PRL (1996)	25452	Generalized Gradient Approximation Made Simple Perdew, Burke, Er	
3	PRA (1988)	22904	Density-Functional Exchange-Energy Approximation	Becke
4	PR (1965)	20142	Self-Consistent Equations Including Exchange and Correlation	Kohn and Sham
5	PRB (1996)	13731	Efficient Iterative Schemes for Ab Initio Total-Energy	Kresse and Furthmuller
6	PRB (1976)	13160	Special Points for Brillouin-Zone Integrations	Monkhorst and Pack
7	PRB (1992)	10876	Accurate and Simple Analytic Representation of the Electron	Perdew and Wang
8	PRB (1999)	10007	From Ultrasoft Pseudopotentials to the Projector Augmented	Kresse and Joubert
9	PRB (1990)	9840	Soft Self-Consistent Pseudopotentials in a Generalized	Vanderbilt
10	PR (1964)	9789	Inhomogeneous Electron Gas	Hohenberg and Kohn
11	PRB (1981)	9787	Self-Interaction Correction to Density-Functional Approx	Perdew and Zunger
12	PRB (1992)	9786	Atoms, Molecules, Solids, and Surfaces - Applications of the	Perdew, Chevary,
13	PRB (1986)	9313	Density-Functional Approx. for the Correlation-Energy	Perdew
14	PR (1934)	9271	Note on an Approximation Treatment for Many-Electron Systems	Moller and Plesset
15	PRB (1994)	9100	Projector Augmented-Wave Method	Blochl
16	PRL (1980)	7751	Ground-State of the Electron-Gas by a Stochastic Method	Ceperley and Alder
17	PRL (1987)	7663	Inhibited Spontaneous Emission in Solid-State Physics	Yablonovitch
18	PRL (1986)	7589	Atomic Force Microscope	Binnig, Quate, Gerber
19	PRB (1991)	7425	Efficient Pseudopotentials for Plane-Wave Calculations	Troullier and Martins
20	PRB (1993)	6925	Ab initio Molecular Dynamics for Liquid Metals	Kresse and Hafner
21	PR (1961)	6467	Effects of Configuration Interaction on Intensities and Phase Shifts	Fano
22	PR (1957)	6260	Theory of Superconductivity	Bardeen, Cooper, Schrieffer

NATURE, October 2014

12 papers on DFT in the top-100 most cited papers in the entire scientific literature, ever.

DFT reminder: First Hohenberg-Kohn theorem

The density as the basic variable: the external potential V_{ext} determines uniquely the charge density, and **the charge density determines uniquely the external potential V_{ext}**.

1-to-1 mapping:
$$V_{ext} \Leftrightarrow \rho$$

The universal functional *F*[*p*]

The ground state density determines the potential of the Schrödinger equation, and thus the wavefunction.

The universal functional F is well defined:

$$F[\rho(\vec{r})] = \left\langle \Psi \middle| \hat{T} + \hat{V}_{e-e} \middle| \Psi \right\rangle$$

Second Hohenberg-Kohn theorem

The variational principle – we have a *new Schrödinger's-like equation*, expressed in terms of the charge density only

$$E_{v}[\rho(\vec{r})] = F[\rho(\vec{r})] + \int v_{ext}(\vec{r})\rho(\vec{r})d\vec{r} \ge E_{0}$$

The Kohn-Sham mapping

F decomposed in non-interacting kinetic + Hartree + mistery

$$F[n(\mathbf{r})] = T_s[n(\mathbf{r})] + E_H[n(\mathbf{r})] + E_{xc}[n(\mathbf{r})],$$

Fermi's intuition: we construct E_{xc} using the **local density approximation** (at every point we use the XC energy density of the noninteracting homogenous electron gas at that density) VOLUME 45, NUMBER 7 PHYSICAL REVIEW LETTERS

18 AUGUST 1980

Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley National Resource for Computation in Chemistry, Lawrence Berkeley Laboratory, Berkeley, California 94720

and

B. J. Alder Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 16 April 1980)

An exact stochastic simulation of the Schroedinger equation for charged bosons and fermions has been used to calculate the correlation energies, to locate the transitions to their respective crystal phases at zero temperature within 10%, and to establish the stability at intermediate densities of a ferromagnetic fluid of electrons.

MY BEST CALCULATION: 2 NOV 2010

N900

10:12 * ≣□ * deb	-m5v3d 🔻		,
$\begin{array}{c} \text{cart. coord. in} \\ k(1) = 1 & -0.2500000 & 0.1 \\ k(2) = 1 & 0.2500000 & -0.1 \end{array}$	1500000 0.2 1500000 0.7	0 500000), wk - 5000001, wk -	
G cutaff - 189.7462 / 2733 G-	vectors)	FFT grid: 1 2	0, 20, 20)
largest allocated arrays est.	size (M2b)	dimensions	
Kohn-Sham Wavefunctions	0.02 Mb	(346,	41
NL pseudopotentials	0.04 Mb	1 346,	
Each V/sho on FFT grid	0.12 Mb	(8000)	
Each G-vector array	0.02 885	(2733)	
G-vector shells	0.00 MB	(65)	
Largest temporary arrays est.	. size (Mb)	dimensions	
Auxiliary wavefunctions	0.08 Mb	1 346,	161
Each subspace H/S matrix	0.00 Mb	1 16,	16)
Each opsi ilbeta j> matrix	0.00 100	L 8,	41
Arrays for the mixing	0.98 Mb	t 8000,	81

http://quantum-espresso.org

A SMALL STEP FOR A CELLPHONE, A GIANT LEAP FOR COMPUTERKIND

t's a strong contender for the geekiest video ever made: a close-up of a smartphone with line upon line of numbers and symbols scrolling down the screen. But when visitors stop by Nicola Marzari's office, which overlooks Lake Geneva, he can hardly wait to show it off. "It's from 2010," he says, "and this is my cellphone calculating the electronic structure of

Nature, 5 May 2016

HIGH-THROUGHPUT SCREENING OF NOVEL MATERIALS

The number of inorganic materials known in full (i.e. with published structures) is ~200,000

Currently, basic properties can be calculated on the entire Piz Daint CSCS supercomputer (3th in the world) at the tune of **1000 structures/minute.**

GREAT ENTHUSIASM FOR MATERIALS DISCOVERY

MAJOR EFFORTS WORLDWIDE

2011 – US: the Materials Genome Initiative

Materials Project (Berkeley), SUNCAT (Stanford), AFLOW (Duke), CHiMaD (NIST) 2014 – CH: 18 MCHF MARVEL (Computational Design and Discovery of Novel Materials)

- 2015 UK: 8.6 MGBP, Materials Computational Discovery Centre, U. Liverpool
- 2015 H2020: 14 M€, Centres of Excellence on materials' simulations:

E-CAM – Simulation and Modelling; MaX – Materials Design at the Exascale; NoMaD – Novel Materials Discovery

2015 - US DOE: 60 M\$, 5 Centers on Comp. Materials Science, 4 years renewable: U. Chicago, UC Berkeley, Rutgers, ORNL, USC

2016 – DK: 22 M\$, Villum Centre for the Science of Sustainable Fuels and Chemicals (DTU Lyngby and Stanford)

2016 – US NSF: 35 M\$, 2 Institutes on Scientific Software, 5 years: MoISSI (Stony Brook), Molecular Sciences Software Institute; SGCI (US San Diego) Science Gateways Community Institute

2017 - US Simons Foundation, 15 M\$/year, Center on Computational Quantum Physics

2017 - US Toyota Research Institutes, 35 M\$, Predictive Battery Performance

MARVEL MISSION STATEMENT

Accelerated design and discovery of novel materials via a materials' informatics platform of high-throughput simulations, powered by

- 1. advanced quantum simulations, for accuracy
- 2. innovative sampling methods, to explore materials space
- 3. materials informatics, to leverage data, machine learning

Materials for energy harvesting, storage, and conversion; ICT; high value/high tech, and organic crystals/pharma.

PHASE I 2014-18 (12 INST, 23 COMP, 3+15 EXP)

MATERIALS MODELLING

The frontiers and the challenges

Materials simulations have become a dominant force in the world of science and technology. The intellectual challenges lying ahead to sustain such a paradigm shift are discussed.

Nicola Marzari

1) PREDICTIVE ACCURACY

2) REALISTIC COMPLEXITY

3) MATERIALS' INFORMATICS

COMPUTATIONAL EXFOLIATION OF ALL KNOWN INORGANIC MATERIALS

PHYSICS AND CHEMISTRY IN LOW DIMENSIONS

HIGH-THROUGHPUT COMPUTATIONAL EXFOLIATION

GEOMETRIC IDENTIFICATION OF LAYERED MATERIALS

Automation

Data

Environment

Data analytics

Research environment Scientific workflows

Social Sharing Standards

Sharing

Automation Remote management High-throughput Database Provenance Storage

<u>http://www.aiida.net</u> G. Pizzi et al., Comp. Mat. Sci. 111, 218 (2016)

LET'S START WITH VOBr₂

FROM ICSD TO A WORKING STRUCTURE

3D RELAXATION

MAGNETIC SCREENING OF THE 2D MONOLAYER

REMOVING MECHANICAL INSTABILITIES

FINALLY...

215 VBr₂O (Pmm2)

Info and properties (for more details and definitions see page 2)

Formula	VBr_2O	DF2-C09 Binding energy [meV/Å ²]	14.4
Spacegroup	Pmm2	rVV10 Binding energy [meV/Å ²]	21.6
Prototype	VCl_2O (Pmm2)	Band gap [eV]	0.9
Parent 3D	VBr ₂ O	Magnetic State	AFM
Source DB	ICSD	Tot. Magnetization $[\mu_B/\text{cell}]$	0.0
DB ID	24381	Abs. Magnetization $[\mu_B/\text{cell}]$	2.54

Band structure and phonon dispersions

Band structure: energy bands of VBr₂O (66 electrons) in Phonon dispersions: phonon frequencies of VBr₂O (8 a window around the chemical potential and along a highsymmetry path. The number of bands included in the calculation is 80.

atoms/cell) along a high-symmetry path.

Crystal structure

Structural parameters: cell (top) and atomic positions (bottom) of VBr₂O in cartesian coordinates.

		x [Å]	y [Å]	z [Å]
a1		3.80622044	0.00000000	0.00000000
a2		0.00000000	7.17029927	0.00000000
a ₃		0.00000000	0.00000000	19.47346306
		x [Å]	y [Å]	z [Å]
•	Br	2.00107500	5.37772439	-1.78545446
•	Br	2.00107500	1.79257489	-1.78545446
•	V_1	1.70214333	3.58514964	0.00000000
•	V_2	1.70214341	0.00000000	0.00000000
•	Br	2.00107500	5.37772439	1.78545446
•	Br	2.00107500	1.79257489	1.78545446
•	01	0.06788642	3.58514964	0.00000000
•	02	0.06788661	0.00000000	0.00000000

Orthographic projections: different views of VBr2O from the x axis (left), the y axis (bottom) and the z axis (center).

DISSEMINATION VIA THE MATERIALS CLOUD

http://www.materialscloud.org

STABILITY ANALYSIS: MAGNETIC AND MECHANICAL

HOW MANY CANDIDATES? GEOMETRIC SCREENING

	Unique to COD	Unique to ICSD	Common to both	Total
Entries analyzed	307616	172370		479986 *
CIF inputs	99212	87070		186282 *
Unique 3D structures	60354	34548	13521	108423
Layered 3D structures	1180	3257	1182	5619

*At this level unicity is not tested

HOW MANY CANDIDATES? GEOMETRIC SCREENING

Difference in interlayer distance when computed with/without vdW functionals (%)

- $E_b < 30 \text{ meV/Å}^2$ (DF2-C09) or $E_b < 35 \text{ meV/Å}^2$ (rVV10) \rightarrow 2D, easily exfoliable
- In-between \rightarrow 2D, potentially exfoliable
- $E_b > 130 \text{ meV/Å}^2 \rightarrow \text{not 2D}$ (discarded)

https://www.materialscloud.org/discover/2dstructures

2D PROTOTYPES

JACUTINGAITE (Pt₂HgSe₃)

FIG. 3. Back-scattered electron microphotograph of Pt₂HgSe₃ (light) and PtSe₂ (dark inclusions) grown at 400°C (run EX685). Scale bar (50 μm) appears at lower left.

MONOLAYER JACUTINGAITE AS A KANE-MELE QSHI

A. Marrazzo et al., Phys. Rev. Lett. 120 117701 (2018)

THERE IS PLENTY OF ROOM AT THE TOP

N. Mounet et al., Nature Nanotechnology 13, 246 (2018)

2D children:

- High electron/hole mobility devices
- Topological insulators, quantum computing
- Ferromagnetic/spintronics in 2D
- Charge-density waves and superconductors
- Plasmonics, transparent conductors

3D layered parents:

- Solid-state ionic conductors
- Hydrogen or oxygen evolution catalysts
- Membranes for filtration/separation
- Piezo, ferro, and thermoelectrics

COMPLEXITY

From total energy to thermodynamics

temperature, pressure, chemical potentials and partial pressures, electrochemical potential, pH

• Length, time, phase and composition sampling

- linear scaling, multiscale,
- metadynamics, sketch-map
- minima hopping, random-structure searches

Complex properties

- spectroscopies and microscopies: IR, Raman, XPS, XANES, NMR, EPR, ARPES, STM, TEM...
- composition-temperature phase diagrams
- electronic and thermal transport: ballistic, Keldysh, Boltzmann
- electron-hole interactions

MULTISCALE TRANSPORT

 Nanoscale devices for microelectronics, quantum devices

 Bulk or nanostructured thermoelectrics (harvesting waste energy, cooling)

 Characterization via first-principles spectroscopies

Source: Nature Materials

leat rejection

ELECTRICAL RESISTIVITY (TEMP, DOPING)

Figure 1 Electrical resistivity of graphene as a function of temperature and doping (ρ , electrical resistivity; *T*, temperature; *n*, carrier density). Left panel: first-principles results obtained using a combination of density-functional perturbation theory, many-body perturbation theory and Wannier interpolations to solve the Boltzmann transport equation. Right panel: experimental data. Adapted from ref. 4, American Chemical Society.

C.-H. Park *et al.,* Nano Letters (2014) T. Y. Kim, C.-H. Park, and N. Marzari, Nano Letters (2016)

LINEARIZED BOLTZMANN EQUATION

Phonon population at equilibrium: $\bar{n}_{\nu} = \frac{1}{e^{\bar{n}\omega_{\nu}/k_{B}T} - 1}$

Phonon population at out-of-equilibrium conditions ∇T :

 $\nu = (\boldsymbol{q}, \boldsymbol{s})$ index on all states

RELAXATION-TIME APPROXIMATION

Often, the Boltzmann equation is simplified with the single-mode relaxation time approximation (SMA), i.e. retaining the diagonal part of the scattering matrix:

In a homogeneous system (∇n_{ν} =0) the population n_{ν} decays to equilibrium with a relaxation time τ_{ν}^{SMA}

RELAXATION-TIME APPROXIMATION

Often, the Boltzmann equation is simplified with the single-mode relaxation time approximation (SMA), i.e. retaining the diagonal part of the scattering matrix:

$$\frac{\partial n_{\nu}}{\partial t} + v_{\nu} \cdot \nabla n_{\nu} \approx -\frac{n_{\nu}}{\tau_{\nu}^{\text{SMA}}}$$

In a homogeneous system (∇n_{ν} =0) the population n_{ν} decays to equilibrium with a relaxation time τ_{ν}^{SMA}

At steady state
$$K \sim \sum_{\nu} C_{\nu} v_{\nu} \Lambda_{\nu}^{SMA}$$

Kinetic theory; each scattering leads to thermalisation

COMPOSITION DEPENDENCE IN Si_{1-x}Ge_x ALLOYS

J. Garg, N. Bonini, B. Kozinsky and N. Marzari, Phys. Rev. Lett. (2011)

LAYERED MATERIALS

G. Fugallo, A. Cepellotti, et al. (Nano Letters, 2014)

NORMAL PROCESSES DOMINATE

Linewidths for graphene, natural abundance, 100 μ

A. Cepellotti et al. (Nature Communications, 2015)

POISEUILLE AND ZIMAN HYDRODYNAMICS

A. Cepellotti et al. (Nature Communications, 2015)

POISEUILLE AND ZIMAN HYDRODYNAMICS

A. Cepellotti et al. (Nature Communications, 2015)

BREAKDOWN OF THE PHONON PICTURE

- the time scale of phonon scattering (i.e. the phonon lifetime) differs from that of heat flux dissipation;
- phonons are not the heat carriers;
- how can we define heat carriers and relaxation times?

To define heat carriers, **we diagonalise the scattering operator:**

$$\frac{1}{\mathcal{V}}\sum_{\nu'}\tilde{\Omega}_{\nu\nu'}\theta^{\alpha}_{\nu'} = \frac{1}{\tau_{\alpha}}\theta^{\alpha}_{\nu}$$

Express the Boltzmann equation in the new basis (f_{α} is now the population of relaxon α):

$$\frac{\partial f_{\alpha}(\vec{x},t)}{\partial t} + \sum_{\beta} \vec{V}_{\alpha\beta} \cdot \nabla f_{\beta}(\vec{x},t) = -\frac{1}{\tau_{\alpha}} f_{\alpha}(\vec{x},t)$$

The rotated equation now is diagonal in the scattering part; we can extract time scales for heat flux dissipation!

So, rather than phonons, we study the collision eigenvectors, that we will call **relaxons**.

A. Cepellotti and N. Marzari, PRX (2016); Viewpoint on <u>https://physics.aps.org/articles/v9/118</u>

SUMMARY

	Phonon	Relaxon
Definition	Eigenstate of har- monic Hamiltonian	Eigenstate of collision matrix
Physical meaning	Collective excitation of atomic displacements	Collective excitation of phonon populations
110	Quantum of vibra- tional energy	Elementary carrier of heat
Exact quantities	Lifetime, velocity and mean free path of the vibration Quasiparticle (energy, wavevector, dispersion relations)	Relaxation time, ve- locity and mean free path of the heat carrier No dispersion relations
Thermal conductivity	Only obtained as solu- tion of the BTE	Obtained as a kinetic theory of the relaxon gas

VELOCITY SCALE

A. Cepellotti and N. Marzari, PRX (2016), J. Hua, G. Vanacore, A. Cepellotti, N. Marzari, and A. H. Zewail, PNAS (2016)

TRANSPORT WAVES IN THE LBTE

Search for a wave solution for the phonon excitation numbers

$$\Delta n_{\mu} = \Re \Big(I_{\mu} e^{i(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t)} \Big)$$

• i.e. Laplace transform the LBTE

$$-i\omega I_{\mu} + iI_{\mu}\boldsymbol{k}\cdot\boldsymbol{v}_{\mu} + \frac{1}{\mathcal{V}}\sum_{\mu'}\Omega_{\mu\mu'}I_{\mu'} = 0$$

TRANSPORT WAVES IN THE LBTE

A. Cepellotti and N. Marzari, PR Materials (2017)

TRANSPORT CONCLUSIONS

- 1. Thermal transport can be described accurately from first-principles
- In layered or 2D materials the phonon picture breaks down, and hydrodynamic phenomena/collective excitations emerge
- 3. **Relaxons** as the individual carriers of heat
- 4. Surface scattering as a **friction effect**
- Transport waves solutions for the LBTE generalization of second sound

THERMAL THANKS

Andrea Cepellotti (Berkeley)

2017 EPFL IBM PRIZE 2018 APS METROPOLIS AWARD

Nicola Bonini (KCL), Cheol-Hwan Park (SNU), Giorgia Fugallo (Nantes), Michele Lazzeri, Lorenzo Paulatto (Paris VI), Francesco Mauri (Roma)

2D THANKS

Nicolas Mounet

Philippe Schwaller

Davide Campi

Antimo Marrazzo Thib

D Thibault Sohier

Ivano E. Castelli

Andrea Cepellotti Giovanni Pizzi

ACKNOWLEDGMENTS

30+ in now in faculty positions and research labs worldwide: from Harvard to MIT, Imperial College, Seoul National...

ACKNOWLEDGMENTS

http://nccr-marvel.ch

Swiss National Centre for Computational Design and Discovery of Novel Materials

http://max-centre.eu

H2020 Centre of Excellence MaX: Materials Design at the Exascale

Platform for Advanced Scientific Computing

SNSF H2020 Nanoscience Foundries and Fine Analysis H2020 European Materials Modelling Council H2020 Graphene Flagship H2020 Marketplace H2020 EPFL Fellows H2020 Marie Curie Max-Planck-EPFL Centre PASC PRACE Constellium Innosuisse Solvay Varinor

CONCLUSIONS

- It's a very exciting and productive time for computational materials science
- Goals: Understand, predict, and design the properties and performance of novel or complex materials and devices
- Accuracy, complexity, and informatics

4 LAST WORDS OF ADVICE

- 1. INTELLIGENCE IS OVER-RATED YOU NEED HARD WORK, DRIVE, VISION, CREATIVITY
- 2. LIFE GOES IN A BLINK
- 3. YOUR NEXT FEW YEARS ARE THE MOST CRITICAL
- 4. YOU ARE GETTING ONE OF THE BEST (ACADEMIC) EDUCATIONS IN THE WORLD