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220 nm S1 waveguide, airbridge or oxide clad

epixnet nanostructuring platform: www.nanophotonics.eu
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Silicon Photonics

What' s the problem silicon photonics is trying to solve ?




55 W-hour battery
stores the energy o
1/2 a stick of dynamite.

If battery short-circuits,
catastrophe is possible ...
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Use the photonics layer to shift data in a multicore architecture

----------------
1y 1

Peter Kogge, DARPA study on Exascale Computing
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Figure 7.25: A possible optically connected memory stack.

Peter Kogge, DARPA study on Exascale Computing




Optical Interconnect: 1.1 TB/s HUB; 1,000,000 links

= 192 GB/s Host Connection

» 336 GB/s to 7 other local nodes in the same
drawer

= 240 GB/s to local-remote nodes in the same
supermode (4 drawers)

= 320 GB/s to remote nodes
= 40 GB/s to general purpose /O

[M. Fields, Avago, OFC 2010, paper OTuP1]
[A. Benner, IBM, OFC 2010, paper OTuH1]
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INTEL IBM

25 Channel Muitiplexor
40 Gb/s Modulators

Silicon Evanescent

Lasers

The 1dea 1s to use optical signals to distribute information on-chip,
between processors.
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External lightsource + modulator




Requirements: Fast (ideally ps) => Carrier modulation
=>Typical An~10-*
=>Typical length = cm

AD =1

k/AnL=m = L=L ~ 10*A

2An
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Solution: Resonant enhancement.
Effective optical path maintained.
Electrical path reduced.

oo

Volume of active carriers reduced.
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Solution: Resonant enhancement.
Effective optical path maintained.
Electrical path reduced.

&
. >

Volume of active carriers reduced
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Kotura ring;:

30um dia. = 100pm circumf.
50 fJ/bit

10 GHz bandwidth

Tuning energy: > 100 fJ/bit
Tolerances ?

Metal Contact Metal Contact
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OpEx 17, 22484 (2009)
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ARTICLES

Sub-femtojoule all-optical switching using

a photonic-crystal nanocavity

Kengo Nozaki'*, Takasumi Tanabe'?, Akihiko Shinya'?, Shinji Matsuo?, Tomonari Sato?,
Hideaki Taniyama'? and Masaya Notomi'2*




tJ pJ tJ

Electrical @ | | @

] @ + Av ]
Optical @ *M M *@




220 nm S1 waveguide, airbridge or oxide clad




In the slow light regime, one can imagine the mode taking a longer route - that’ s
why it takes more time, and why there is more light inside the structure.
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80 um long PhC

L. O'Faolain et al., IEEE Photonics Journal 2, 404 (2010)
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William Whelan-Curtin Kapil Debnath
Electrical operation. Work in progress.....
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The slow light concept allows us to make small footprint,
low driving power modulators with high bandwidth.

They are of similar size, and therefore capacitance, as
State-of-the-Art microring resonators, but offer far more
bandwidth and do not need to be tuned.
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Cavity

s, Pavia March 2012 No.33/60

l 300x enhancement !!

Why 300x ?
< 1000} |
= : 3
A

L _ 1 a) Purcell effect
= 100 41 b) Extraction
L ' efficiency
£ 300x
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“Room-temperature emission at telecom wavelengths from silicon photonic crystal nanocavities”,
R. Lo Savio et al., Appl. Phys. Lett. 2011
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The Vs and Qs of optical
microcavities

Pauline Rigby and Thomas F. Krauss

......................................................................................................................................................................

4 J'L'Q’ V — + Tnonmd
F P

E. M. Purcell, Phys. Rev. 69, 37 (1946).
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271’ ,
T Density of states
Matrix element

The Purcell factor relates to Fermi’s Golden Rule

The transition between two quantum mechanical states is given by the
product of the matrix element (derived from the Hamiltonian) and the
density of final states.

This transition probability is also called decay probability and is related
to mean lifetime.




To enhance the interaction between a cavity and an emitter, they need to
agree 1n emission wavelength and be 1n the same space -> Q/V
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Normalized PL intensity
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The Purcell-factor makes
defect emission “Room-
temperatureable”
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Ultralow-threshold electrically pumped quantum-

dot photonic-crystal nanocavity laser

Bryan Ellis’, Marie A. Mayer??, Gary Shambat’, Tomas Sarmiento', James Harris', Eugene E. Haller??
and Jelena Vuckovic'*
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Using hydrogen treatment and well-designed designed
photonic crystal cavities, we can achieve significant light
emission directly from silicon. This is not yet sufficient for
optical interconnects, but further improvements are possible.

The output power 1s competitive with comparable III-V
devices,. although not with III-V materials as such.




2. Silicon Nanophotonics
for Biosensors




hip (LoC)
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The Lab on a chip (LoC) concept aims to realise
biochemical analysis/synthesis in a miniaturised
format.
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Very high sensitivity -> Biacore
Broad resonance
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SOI biosensor chip
c)

temperature control

Lower sensitivity
Narrow resonance -> Genalyte

K. deVos, R. Baets et al., OPTICS EXPRESS 15, pp. 7610-7615 (2007).
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High sensitivity
Narrow resonance -> 79?9

Di Falco, Krauss et al., APL 2009
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Light source

Spectrum Analyser




Transducer

Source

A

The possible integration of silicon light sources would lead to
miniaturisation, large scale integration and simplicity.
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Light source

Spectrum Analyser
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Excitation

H Schmidt & AR Hawkins, Nature Photonics August 2011
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Fluorescence correlation spectroscopy (FCS), FRET,...
Measure changes caused by molecular binding, not using the surface.

H Schmidt & AR Hawkins, Microfluidics & Nanofluidics (2008)
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As it does not have volume, only surface, its entire structure is exposed to its
environment and responds to any molecule that touches it. This makes it a good
material for super-sensors capable of detecting single molecules of toxic gases.
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Key 1ssues Biology

1. Lab on a chip — chip on a lab: Integration.

2. Move away from surface affinity biosensor. Novel
integrated sensor architectures.




