FIBER-TOP TECHNOLOGY: FROM FUNDAMENTAL PHYSICS TO PRECLINICAL RESEARCH

Davide Iannuzzi VU University Amsterdam

UNIVERSITEIT

Imaging at the nanoscale (like vinyl LP players)

Atomic force microscopy and the Casimir effect in Amsterdam (2005)

$$F = -\frac{\partial E}{\partial d}$$

d

...there exists a force

Casimir force measurements (@ 100 nm)

...an annoying problem

Fiber-top technology (2005)

8 > VU

VRIJE UNIVERSITEIT AMSTERDAM

Fiber-top technology (2005)

Fiber-top technology: a new platform for all optical sensing

Extremely small (0.1 mm)

Easy to use

Adapt for harsh environments

Adapt for remote sensing

in collaboration with S. Deladi, M. Elwenspoek, E. Berenschot, UTwente

Fiber-top technology: and it even works!

Extremely small (0.1 mm)

Easy to use

Adapt for harsh environments

Adapt for remote sensing

11

NIVERSITEIT

Reality check beyond the comfortable walls of my own laboratory

Adapt for harsh environments

<u>Cost of fabrication</u> 1,000 €/device, more than one day of work!

Easy to use

Adapt for harsh environments

Adapt for remote sensing

ATOMIC FORCE MICROSCOPY

ALL OPTICAL SENSING

Scanning probe microscopy

UNIVERSITEIT

(F. Ariese (VU), A. Mank (Philips), B. Tiribilli (CNR), and G. Margheri (CNR)

15

Applications in my group:

- Brain
- Chick embryos

Disclosure: the author is founder and shareholder of Optics11

Indeter in a needle

Ex-vivo intervertebral disk experiment

PRELIMINARY RESULTS

Fiber-top MEMS

In collaboration with

21

and with J. van der Velden, A. Najafi, and M. Helmes (VUmc)

Disclosure: the author is founder and shareholder of Optics11

Previous state-of-the-art

time

(note: the change in length is negligible!) ISOMETRIC CONTRACTION!

Are we doing the right thing?

Measure F real time

If F>F*, move pillar to keep F=F*

Measure F real time If $F < F_0$, move pillar to keep $F = F_0$

Piezoelectric force sensor:

- Too slow
- Not sensitive enough
- Remote \rightarrow more noise/drift

Ferrule-top force sensor for the study of heart cells

We can mimic, EXACTLY, the heart cycle at physiological conditions at the single cell level (no extracellular matrix)!

Study regarding:

- Chemical signaling during contraction
- Disease animal models
- Pharmaceutical

25

VERSITEIT

Ferrule-top force sensor for the study of heart cells

Lower end-diastolic force-length relation

Ferrule-top force sensor for the study of heart cells

↓ +1 617 696-7335 US +353 1 685 48	10 EU LOGIN 🖑 SEARCH 🔎
ION OPTIX enabling discovery	RODUCTS SOLUTIONS SUPPORT NEWS CONTACT ABOUT
	Home / Products / OptiForce
Hardware	OPTIFORCE
	Slideshow
CLICK HERE TO CONTACT US FOR PRICE AND MORE INFO	
	Optical Force Transducer
	The IonOptix OptiForce is a revolutionary optical fiber interferometry-b to detect the nanoscopic forces from single isolated cardiac cells. It o technologies: sensitivity and speed, with detection limits down in the low response above 3kHz.
	How it Works
	The OptiForce works by using laser light to interrogate a reflective cantilever arm attached to one end myocyte. Contractile forces bend the cantilever and produce changes in the light path length. Light reflected

27

VU

VRIJE UNIVERSITEIT AMSTERDAM

Disclosure: the author is founder and shareholder of Optics11

COMING UP: Solve the cliffhanger

28 VU VIUE UNIVERSITEIT

Measurements with a standard AFM in Amsterdam

0 |

d (nm)

 $F_C(t) = F_C(d^* + \delta \cos(\omega_2 t)) \simeq F_C(d^*) -$

 $\left. \frac{\partial F_C}{\partial d} \right|_d$ $\cdot \delta \cos(\omega_2 t)$

The Amsterdam method: hydrodynamic force

$$F_C(t) = F_C(d^* + \delta \cos(\omega_2 t)) \simeq F_C(d^*) + \left(\frac{\partial F_C}{\partial d}\Big|_{d^*} \cdot \delta \cos(\omega_2 t)\right)$$

UNIVERSITEIT

...which is not a problem with ferrule-top

From Casimir to dark energy

Remote galaxies: the Universe is expanding at accelerated rate

Dark energy and 5th force

Dark energy: a particle with a small mass? $m_{\phi} \simeq 10^{-33} \text{ eV} \Longrightarrow 5^{\text{th}}$ force $F_{d.e.}/A \simeq 1 \text{pN/cm}^2$

10-30 µm

Dark energy and 5th force

Dark energy: a particle with a small mass? $m_{\phi} \simeq 10^{-33} \text{ eV} \Longrightarrow 5^{\text{th} \text{ force}}$ $F_{d.e.}/A \simeq 1 \text{pN/cm}^2$ $F_{el}/A \simeq 1000 \times F_{d.e.}/A$

10-30 µm

$$\frac{F_{\rm el}}{A} = \epsilon_0 \left(\frac{\sigma_L^2}{2d^2} + \frac{2\sigma_S^2}{k_{\rm max}^2 - k_{\rm min}^2} \int_{k_{\rm min}}^{k_{\rm max}} \frac{k^3}{\sinh^2(kd)} dk \right)$$

We cannot test it...or can we?

Dark energy and 5th force

ATTRACTIVE < REPULSIVE

Something else:

dark energy

COMPARE TOTAL FORCE WITH AND WITHOUT GAS

does not exist \rightarrow no change of force

exists \rightarrow the force changes

COMING UP: Social sciences

39 VU VIUE UNIVERSITEIT

Lock-in amplifiers feedback loop

Oscillate x around x_0

Measure *y* at ω (Lock-in amplifier) $\longrightarrow A$

Measure *y* at ω (Lock-in amplifier) $\longrightarrow A$

Set $x_0 = x_0 + \gamma A$

Measure *y* at ω (Lock-in amplifier) $\xrightarrow{} A$

Set $x_0 = x_0 + \gamma A$

Lock-in amplifiers feedback loop

Set $x_0 = x_0 + \gamma A$

Lock-in amplifiers feedback loop

The beauty contest experiment: idea

VERSITEIT

Survey – VU University 2016

How attractive would you rate the computer generated face to the left, on a scale **from 1 to 100**.

Where **100** would represent a very attractive face. And the face below would represent a face with an attractiveness score of about **25**.

1

≈25

Always the same

40

Continue

Sequentially adjusted via lock-in feedback loop to converge to maximizing features

The beauty contest experiment: method

Sees avatar with	Gives his vote	New values for
$x_1 = \tilde{x}_1 + A_1 \cos\left(\omega_1 i\right)$		\tilde{x}_1
$x_2 = \tilde{x}_2 + A_2 \cos\left(\omega_2 i\right)$	$g_i \longrightarrow$	\tilde{x}_2
	$@\omega_2$	

New values for \tilde{x}_1

Voter i+2

The beauty contest experiment: results

Acknowledgements (of collaborators not already mentioned in the slides!)

<u>VU</u>

- A. Almasi
- N. Antanovaite
- K. Babaei Gavan
- L. Bartolini
- S. Beekmans
- A. F. Borghesani
- D. Chavan
- S. de Man
- K. Heeck
- M. Marrese
- A. Petrusis
- J. H. Rector
- R. Sedmik
- M. Slaman
- C. Van Hoorn
- H. van Hoorn
- K. Zhou
- P. Zuurbier

Optics11

- N. Rijnveld
- G. Gruca
- K. van der Laan
- E. Breel
- T. van der Wardt
- E. Labordus
- E. Leeferink
- M. Stoffel

. . .

H. Brouwer

Giacomo Bressi – amico e maestro

