


≈ 0.2 mm 

Cantilever spring 

(miniaturized diving board) 

Sharp tip 
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≈ 0.2 mm 

Cantilever spring 

(miniaturized diving board) 

Sharp tip 

Incoming light 
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Imaging at the nanoscale 

(like vinyl LP players) 

≈ 0.2 mm 

Cantilever spring 

(miniaturized diving board) 

Sharp tip 
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# of photons 

Uncertainty Principle 
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; 

counting only 

the modes 

that fit 

The energy depends on separation… 

…there exists a force 

VACUUM 

… 

d 
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Casimir force measurements (@ 100 nm) 

...an annoying 

problem 
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Extremely small (0.1 mm) 

Easy to use 

Adapt for harsh environments 

Adapt for remote sensing 

125 µm 

in collaboration with S. Deladi, M. Elwenspoek, E. Berenschot, UTwente 
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Extremely small (0.1 mm) 

Easy to use 

Adapt for harsh environments 

Adapt for remote sensing 
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Extremely small (0.1 mm) 

Easy to use 

Adapt for harsh environments 

Adapt for remote sensing Cost of fabrication 

1,000 €/device, more 

than one day of work! 
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3 mm 

3 mm 

Extremely small (0.1 mm) 

Easy to use 

Adapt for harsh environments 

Adapt for remote sensing 

ATOMIC FORCE MICROSCOPY ALL OPTICAL SENSING 
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Easy to use 

Adapt for harsh environments 

(B. Weckhuyzen)  

(G. Boetsch) 

2 frames/s 
(G. Schitter) 

(D. Andres) 

14 (F. Ariese (VU), A. Mank (Philips), B. Tiribilli (CNR), and G. Margheri (CNR) 



Disclosure: the author is founder and shareholder of Optics11 

HARD SOFT 
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Applications in my group: 

- Brain 

- Chick embryos 

 



PIEZO 

(proximal end) 
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Piezo 

Needle 

In phase component = elasticity 
Out of phase component = viscosity 
 

Φ=1.2 mm 

STORAGE 

LOSS 
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PRELIMINARY RESULTS 



Alternate layers of structural and sacrificial materials 

(like in MEMS technology) 
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Problem in 

Casimir 

experiments Fiber-top 

technology 

Ferrule-top 

technology 

AFM  

Indentation 

COMING UP: 

All-optical sensing 
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In collaboration with the group of L. Palmieri 

In collaboration with the group of L. Zeni 

PHOTOACOUSTIC SPECTROSCOPY 
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In collaboration with 

Disclosure: the author is founder and shareholder of Optics11 

and with J. van der Velden, A. Najafi, and M. Helmes (VUmc) 
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To piezoelectric force sensor 

Single, isolated myocyte (rat) 

Previous state-of-the-art 

fo
rc

e
 

time 

Are we doing the right thing? 

(note: the change in length is negligible!) 

ISOMETRIC CONTRACTION! 
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If F>F*, move pillar to keep F=F* 

Measure F real time 

After load 

Pre load 
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http://sundar.me/2011/03/22/148-revision-8/600px-diagram_of_the_human_heart_cropped-svg/


If F<F0, move pillar to keep F=F0 

Measure F real time 

Piezoelectric force sensor: 

- Too slow 

- Not sensitive enough 

- Remote → more noise/drift 

F
o
rc

e
 

L
e
n
g
th

 

Time 

After load 

Pre load 

24 

http://sundar.me/2011/03/22/148-revision-8/600px-diagram_of_the_human_heart_cropped-svg/


We can mimic, EXACTLY, the 

heart cycle at physiological 

conditions at the single cell level 

(no extracellular matrix)! 

Study regarding: 

- Chemical signaling during contraction 

- Disease animal models 

- Pharmaceutical 
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Isopranaline 

(stimulant) 

Control 

Lower end-diastolic force-length relation 
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Problem in 

Casimir 

experiments Fiber-top 

technology 

Ferrule-top 

technology 

AFM 

Indentation 

Sensing 

COMING UP: 

Solve the cliffhanger 
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V0 feedback 

Measure S(2ω1)  

Measure S(ω2)  

TO ELIMINATE ELECTROSTATIC RESIDUAL FORCE 

TO CALIBRATE THE INSTRUMENT 

TO MEASURE THE CASIMIR FORCE 

Measurements with a standard AFM in Amsterdam 
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Casimir 

IN PHASE 

Shadow? Minimized (small oscillations) 
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Air 

Hydrodynamic 

PHASE SHIFT=90º  

Casimir 

IN PHASE 

10-7 
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Fiber-top 

32 



Casimir force 

Ferrule-top 
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matter (4%) 

dark matter 

(23%) 

dark energy 

(73%) 

Remote galaxies: 

the Universe is 

expanding at 

accelerated rate 

ATTRACTIVE REPULSIVE 

< 

< 

Something else: 

dark energy 
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matter (4%) 

dark matter 

(23%) 

dark energy 

(73%) 

Remote galaxies: 

the Universe is 

expanding at 

accelerated rate 

Dark energy: a particle with a small mass? 

5th force 

10-30 µm 

ATTRACTIVE REPULSIVE 

< 

< 

Something else: 

dark energy 
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matter (4%) 

dark matter 

(23%) 

dark energy 

(73%) 

Remote galaxies: 

the Universe is 

expanding at 

accelerated rate 

Dark energy: a particle with a small mass? 

5th force 

+ 

+ 

- 

- 

10-30 µm 

We cannot test it...or can we? 

ATTRACTIVE REPULSIVE 

< 

< 

Something else: 

dark energy 
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matter (4%) 

dark matter 

(23%) 

dark energy 

(73%) 

Remote galaxies: 

the Universe is 

expanding at 

accelerated rate 

Dark energy: a particle with a variable mass? 

in vacuum 

J. Khoury and A.Weltman, 

Phys. Rev. Lett. 93 (2004) 171104 

+ 

+ 

- 

- 

If        does not exist → no change of force  

If        exists → the force changes  

COMPARE TOTAL FORCE WITH AND WITHOUT GAS 

ATTRACTIVE REPULSIVE 

< 

< 

Something else: 

dark energy 
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Problem in 

Casimir 

experiments Fiber-top 

technology 

Ferrule-top 

technology 

AFM  

Indentation 

Sensing 

Casimir 

COMING UP: 

Social sciences 
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time 

si
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a
m
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constant oscillating around zero 
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x 

y 
Variable that I can control 

Variable that I can measure 
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x 

y 
Variable that I can control 

Variable that I can measure 
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x 

y 
Oscillate x around x0 

Measure y at ω 

(Lock-in amplifier) 
A 

A 
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x 

y 
Oscillate x around x0 

Measure y at ω 

(Lock-in amplifier) 
A 

A 

Set x0=x0+γA 
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y 
Oscillate x around x0 

Measure y at ω 

(Lock-in amplifier) 
A 

A 

Set x0=x0+γA 
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x 

y 
Oscillate x around x0 

Measure y at ω 

(Lock-in amplifier) 
A=0 

Set x0=x0 
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Which of these avatars 

is the most attractive? 

𝑥1 
𝑥2 

AVERAGE PEOPLE’S VOTE 

(1=ugly, 100=beautiful) 

0 

100 
100 
1 

100 

GOAL OF THE EXPERIMENT: 

Lock-in feedback loop →  

Find values of x1 and x2 that 

maximizes the average vote 
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Sequentially adjusted via lock-in 

feedback loop to converge to 

maximizing features 

Always the same 
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Voter i Sees avatar with Gives his vote New values for 

Voter i+1 Sees avatar with Gives her vote New values for 

Voter i+2 

... ... ... 
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PEOPLE’S  

OPINION 

 Running average over 150 consecutive voters 
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Problem in 

Casimir 

experiments Fiber-top 

technology 

Ferrule-top 

technology 

AFM 

Indentation 

Sensing 

Casimir 

? 
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