
Dynamics of the 
 effective mass 

and the 
anomalous velocity 

J.E. Sipe 
Department of Physics 
University of Toronto 
 



Federico 
Duque-Gomez 

Mike 
Fang 

Aephraim 
Steinberg 
and his 
research 
group 













Outline 

The conventional wisdom 

The conventional wisdom is wrong! 

When the conventional wisdom is not so wrong 

Beyond the conventional wisdom 

Experiments and possible experiments 

The moral(s) of the story 



Outline 

The conventional wisdom 

The conventional wisdom is wrong! 

When the conventional wisdom is not so wrong 

Beyond the conventional wisdom 

Experiments and possible experiments 

The moral(s) of the story 



Effective mass and Bloch oscillations 

The anomalous velocity 



Effective mass and Bloch oscillations 

The anomalous velocity 



Effective mass “theorem” 

( )E k

k

*( )
Fa

m k
=

1
m*(k)

= 1
!2
d 2E(k)
dk 2



k 

x 

t 

<v> E(k) 



k 

x 

t 

<v> 

F 

E(k) 



x 

t 

<v> 

F 

k 

E(k) 

<v> 

v = dω (k)
dk



k 

x 

t 

<v> 

F 

E(k) 

<v> = 0 



k 

x 

t 

<v> 

F 

E(k) 

<v> = 0 



k 

t 

<v> E(k) 

x 

F <v> 



k 

x 

t 

<v> 

F 

E(k) 

<v> = 0 



k 

t 

<v> E(k) 

x 

F 

Bloch oscillations 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 

x 

<v> 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 

x 

<v> 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 

x 

<v> 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 

k 

E(k) 

F 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 

k 

E(k) 

F 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 

k 

E(k) 

F 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 

k 

E(k) 

F 

x 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 

k 

E(k) 

F 

x 



Difficulties in observing 
Bloch oscillations 

Wavepacket spreading 
Zener tunneling 
Scattering processes 

k 

E(k) 



V(x) 

x 

b 

Bloch
h ht
bF beE

= =

0.5
170 17

500Bloch

b nm
kV VE

cm m
t fs

µ

=

= =

≈



E 

- + 

Waschke et al., 
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Optical Lattices

I. Bloch, M. Greiner (2005)

Optical lattices 

I. Bloch, M. Grenier (2005) 

Ultracold atoms: small spread in momentum 
Adiabatic loading: wavepacket in one band 
Acceleration of the lattice:  inertial force in 
     the lattice frame 
Turn off the lattice:  measure the velocity 
     at any desired time 



VOLUME 76, NUMBER 24 P HY S I CA L REV I EW LE T T ER S 10 JUNE 1996

FIG. 2. Bloch oscillations of atoms: momentum distributions
in the accelerated frame for equidistant values of the accel-
eration time ta between ta ≠ 0 and ta ≠ tB ≠ 8.2 ms. The
light potential depth is U0 ≠ 2.3ER and the acceleration is
a ≠ 20.85 mys2. The small peak in the right wing of the first
five spectra is an artifact.

These results can be explained as follows. Bloch states
of quasimomentum q are coherent superpositions of
plane waves, i.e., momentum states jp ≠ h̄sq 1 2jkdl
(j integer). Because of the applied force, q evolves in
time according to (1) with the initial condition qs0d ≠ 0.
In the perturbative case considered here (U0 ø 16ER),
for qstad , 0 the Bloch state jn ≠ 0, qstadl is very
close to the momentum state jp ≠ h̄qstadl: It has very
small populations [,sU0y16ERd2 . 1%] on the jp ≠
h̄qstad 6 2h̄kl momentum states. For qstad close to k, the
Bloch state is mainly a linear superposition of the jp ≠
h̄qstadl and jp ≠ h̄fqstad 2 2kgl momentum states, with
equal amplitudes for qstad ≠ k, i.e., for ta ≠ tBy2. For
tBy2 , ta , tB, qstad scans the g2k, 0f interval of the
Brillouin zone and the momentum distribution is turned
back into the single initial peak.
In order to further illustrate the oscillatory motion of

the atoms, we have deduced from our data the mean
atomic velocity as a function of ta for different val-
ues of the potential depth U0 and for an acceleration
a ≠ 60.85 mys2. We reduce the smoothing effect due to
the width of the quasimomentum distribution as follows:
We slice the initial momentum peak into narrow channels
labeled i, centered at qis0d and of width ky18. Follow-
ing the time evolution of each of these slices, we calculate
the mean velocity for the atoms in momentum channels
h̄qistad, h̄qistad 6 2h̄k where qistd evolves according to
(1). The contributions of the different channels are com-
bined in one curve after a time translation of h̄qis0dyF.
We have plotted in Fig. 3 the results for three values of

FIG. 3. Mean atomic velocity kyl as a function of the
acceleration time ta for three values of the potential depth: (a)
U0 ≠ 1.4ER , (b) U0 ≠ 2.3ER , (c) U0 ≠ 4.4ER . The negative
values of Fta were measured by changing the sign of F. Solid
lines: theoretical prediction.

U0yER. The measured Bloch periods agree with the ex-
pected value (8.2 ms) to within an uncertainty of 4% and
do not depend on U0. For U0 ≠ 0.54ER the amplitude
of the Bloch oscillations is 0.68h̄k and corresponds to an
oscillation in position of 3.1 mm. These amplitudes de-
crease with growing U0 [cf. Fig. 4(a)]: The band flattens
out as a consequence of the smaller tunnel coupling be-
tween neighboring sites of the lattice.
A striking feature of the oscillations presented in Fig. 3

is their asymmetry, which is particularly pronounced for
low values of the optical potential: The slope of the mean
velocity near the edge of the Brillouin zone (Fta ≠ 6h̄k)
is steeper than that near the zone center (Fta ≠ 0, 62h̄k).
This effect can be described in terms of effective masses:
The dynamics of the particle is equivalent to that of a
particle in free space: mpdkylydt ≠ F with an effective
mass mpsqd given by h̄2ymp ≠ d2E0sqdydq2, which is
in general different from the real mass because of the
interaction with the potential. In the center and at the edge
of the Brillouin zone, the energy band is approximately
parabolic, the effective mass is constant, and kyl evolves
linearly in time. By measuring the slope of kylstad around
ta ≠ 0 (q ≠ 0) and ta ≠ 6tBy2 (q ≠ 6k) in Fig. 3,
we deduce these two effective masses. In Fig. 4(b), we
present their variation with the potential depth U0. For
weak potentials (U0 ! 0), mpsq ≠ 0d tends to the free
atom mass m and mpsq ≠ kd tends to 0. With increasing
potential depth the atoms are more tightly bound and
the effective masses increase in absolute value. For

4510

Dehan et al., Phys. Rev. Lett. 76, 4508 (1996) 
Peik et al., Phys. Rev. A55, 2989 (1997) 

Acceleration of a BEC: 
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2D atomic lattices 

2/16/2014, 4:15 AMCreating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice : Nature : Nature Publishing Group

Page 2 of 11http://www.nature.com.myaccess.library.utoronto.ca/nature/journal/v483/n7389/full/nature10871.html

To create and manipulate Dirac points, we have developed a two-dimensional optical lattice of adjustable geometry. It is formed by three

retro-reflected laser beams of wavelength λ = 1,064
nm, arranged as depicted in Fig. 1a. The interference of two perpendicular beams,

X and Y, gives rise to a chequerboard lattice of spacing  . A third beam,  , collinear with X but detuned by a frequency �, creates

an additional standing wave with a spacing of λ/2. This yields a potential of the form

where  , V  and V  denote the single-beam lattice depths (proportional to the laser beam intensities), � is the visibility of the

interference pattern and k = 2�/λ. We can adjust the two phases continuously, and choose � = � and 	 = 0 (Methods). Varying the

relative intensities of the beams allows us to realize various lattice structures (Fig. 1b). In the following, we focus on the honeycomb

lattice, whose real-space potential is shown in Fig. 1c.

Figure 1: Optical lattice with adjustable geometry.

X Y

Tarruell et al., Nature 483, 202 (2012) 
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2
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Results and Discussion
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Increasing the force…

Rubidium atoms

(b=390 nm, a=60 m/s2)

Max.Ampl.~0.4 mm/s 

increase force 
20m/s2 to 60m/s2 

...still <1% Zener tunneling into other bands 



the data, respectively, and are in agreement with the
measured parameters within experimental uncertainty.
Under the abruptly applied force, the initially single-

band state will acquire amplitudes in adjacent bands over
time. The coupling to these additional bands provides
contributions to the average acceleration that will oscillate
at the respective energy differences. For narrow momentum
width wave packets and times shortly after the force is
applied, the acceleration is given by [3,4]

haðtÞi ¼ F
m0

!
m0

m$
N
þ
X

n≠N

2

m0

p2
nN

ΔnN
cosðΔnNt=ℏÞ

"
; (4)

where ΔnN ¼ En − EN and pnN are the energy gap and
momentummatrix element between Bloch states in bands n
and N, respectively. At t ¼ 0 the contributions to hai are in
phase and the initial acceleration is that of a particle with
bare mass, as expected from Ehrenfest’s theorem, and can
be seen in Eq. (4) by applying the effective mass sum rule
[3]. For a particle initially in the ground band (N ¼ 1), the
coupling is primarily to the first excited band (n ¼ 2), and
the effective mass dynamics in this two-band case are
governed entirely by the band gap Δ21. As the particle
traverses the Brillouin zone during a Bloch cycle, the band
gap changes, resulting in a variation in the amplitude and
frequency of the effective mass oscillation. These complex
oscillations are the effective mass dynamics.
To study the dynamics, we fit the average velocity to

the sum of two sinusoids, explicitly separating the Bloch
oscillation from the effective mass dynamics,

vðtÞ ¼ Ad sinðωdt − ϕdÞ þ AB sinðωBt − ϕBÞ; (5)

where A is the amplitude, ω the frequency, and ϕ the
phase of the oscillations. The subscripts d and B indicate
parameters for the effective mass oscillation and Bloch
oscillation, respectively. Due to the variation of the band
gap across the Brillouin zone, this fitting function is not
strictly correct at times comparable to the Bloch period.
Equation (5) is a compromise between capturing as many
of the features of the dynamics as possible while still
obtaining reliable fits. When extracting the effective mass
oscillation we fit only the first 300 μs of data (roughly three
periods of the fast oscillation) to obtain an accurate estimate
of the effective mass dynamics near the center of the
band (k ¼ 0).
Figure 3 plots the dependence of these time scales on

the applied force F and lattice depth s. The frequency of the
slow oscillation, fB, is observed to scale linearly with
the applied force [Fig. 3(a), lower], as expected for Bloch
oscillations. We also plot this frequency, scaled by the
applied force, against lattice depth [Fig. 3(b), upper] to
show that the frequency is independent of lattice depth. The
fast oscillation frequency, fd, increases with lattice depth
[Fig. 3(b), lower] and thus the band gap, but is independent
of applied force [Fig. 3(a) upper]. The fitted frequency is
compared to the calculated band gap at k ¼ 0 and k ¼ kr,
representing the range of frequencies the particle samples
as it undergoes a complete Bloch oscillation. A more direct
comparison to the data is made by fitting Eq. (5) to the first
300 μs of data generated from a GPE simulation, in the
same way as we fit to the experimental data.
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FIG. 2 (color online). Observation of effective mass dynamics. s ¼ 9.4 and F=m0 ¼ 11.7 μm=ms2. (a) Composite of absorption
images. Each row is a slice of an image taken after variable evolution time in the lattice (4 μs resolution) and 20 ms TOF. Color scale:
from blue to red, indicates increasing optical density. (b) Example absorption image, and one-dimensional profile and fit. (c)–(e) The
velocity and amplitude of each peak, and the reconstructed average velocity of the distribution. The gap in the data at 650 μs due to poor
condensate preparation during these runs. The solid black curve is the result of low-pass filtering this data, serving as a guide to the eye.
(f)–(h) Corresponding GPE simulation (see text).
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S = 9.4,  F/m = 11.7 μm/ms2 



From the average velocity fits we extract the initial
response to the applied force (Fig. 4). The external force is
applied within 20 μs after a 20 μs delay. This delay is
accounted for by the phase in the sinusoids of our fitting
function. The initial response is evaluated at time
t0 ¼ ϕd=ωd, when the phase of the fast oscillation is zero.
The effective mass theorem Eq. (1) describes the response

of a particle to a force over time scales that are long
compared to the interband dynamics; thus, we estimate this
effective mass from the Bloch oscillation alone. Since the
band curvature decreases with increasing lattice depth, the
effective mass increases. However, the full response con-
tains contributions from both the slow Bloch oscillations
and the fast effective mass dynamics. The dynamical mass
is estimated from the sum of these contributions, and at t0 is
observed to be consistent with the bare mass, independent
of lattice depth.
In deep lattices (s > 10), the deduced effective mass

begins to deviate from the predictions. This is partially
due to the growth of high-order diffraction peaks in the
momentum distribution which lie beyond our imaging
window. Neglecting these peaks causes us to overestimate
the amplitude of the Bloch oscillation, and thus under-
estimate the effective mass. Despite this correction, we find
that our measured amplitude for Bloch oscillation is larger
than expected (see sample data and simulation in Fig. 2),
leading to an estimated effective mass smaller than
expected. This effect is only prominent in the deep lattice
regime, whereas the bulk of our data are for lattice depths of
s < 10. The deviation in AB may be a band-mapping effect
due to the finite turn-off time of the optical lattice [23,24],
which is expected to be more prominent in the deep lattice
regime. Note that this has a minimal impact on the estimate
of the dynamical mass since the dominant contribution in
the deep lattice regime is from the effective mass dynamics.
The error bars are given by the fit uncertainties, where the
main contribution in the effective mass uncertainty comes
from fitting the long time scale Bloch oscillation. In the
presence of excited band decay and interband dephasing,
the effective mass dynamics are expected to reduce to the
behavior described by the usual effective mass. In our
system, this can occur due to interparticle scattering
[30,31]. Within the parameter range probed, we do not
expect to see dephasing of the effective mass oscillation.
To our knowledge, the effective mass dynamics explored

in this work have never before been observed, despite their
initial prediction nearly 60 years ago. Whereas past work
on Bloch oscillations focused on time scales that are long
compared to that of the interband dynamics, our work
clarifies the role of the effective mass on short time scales,
requiring comparatively fast excitation and fine temporal
resolution. These results shed experimental light on one of
the most fundamental aspects of motion in a lattice, and
should be directly relevant to a broad range of experiments
on ultrafast dynamics in a variety of systems, for example
in the control of electron dynamics in a solid on a
subfemtosecond time scale [4,10–14].

The authors thank A. Jofre, M. Siercke, and C. Ellenor
for their work in developing the Bose-Einstein condensa-
tion apparatus, A. Stummer for providing technical support,
and M. Ivanov and O. Smirnova for fruitful discussions. We
acknowledge support from NSERC and CIFAR.
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FIG. 3 (color online). (a) Variation of dynamical mass fre-
quency (upper) and Bloch frequency (lower) with applied force.
The dynamical mass frequency, normalized by Δ, is expected to
be independent of the force. The Bloch frequency scales linearly
with the applied force. (b) Variation in Bloch frequency (upper)
and dynamical mass frequency (lower) with lattice depth. The
Bloch frequency, normalized by F=m0, is expected to be a
constant m0d=h (blue solid line). The dynamical mass frequency
is compared to the band gap at k ¼ 0 and k ¼ kr (upper and lower
solid blue lines, respectively), and to simulated data fitted to
Eq. (5) (dashed black curve).
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“Dynamics” of the Berry curvature

Load a wavepacket in the band and apply a force:
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“Dynamics” of the Berry curvature

Group velocity:

vy

vx

τ B = h /bFvR = h /mb
Simple effective mass picture 



�Dynamics� of the Berry curvature 
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Group + anomalous velocity: 

vy 

vx 

Simple effective mass  
   + anomalous velocity picture 

vA(k)



�Dynamics� of the Berry curvature 
 

Full velocity (semianalytical with turn-on): 
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Pfirsch & Spenke (1954) - For a wavepacket initially in one band:

Bare mass at t=0, when the force is turned on.

Short period of oscillations around the usual effective mass.

F

k

t( fs)

k

F 

ΔE 

period(s) inversely proportional 
to energy difference(s) 



Attosecond control of pulses should allow the 
study of the emergence of “single-particle” 
quasi-particle properties 

What about materials like graphene? 

How affected by electron-electron, 
 electron-phonon interactions? 




