$X \land N \land D U$

Scaling photonic quantum computers

ZACHARY VERNON University of Pavia Colloquium 29 April 2021

Copyright © 2021 Xanadu Quantum Technologies Inc.

OUTLINE

1. ABOUT US

4. APPLICATIONS: NISQ AND FTQC

5. NANOPHOTONIC DEVICES FOR SQUEEZING

2. PHOTONICS FOR QUANTUM COMPUTING

3. GAUSSIAN BOSON SAMPLING ON THE CLOUD

adu Quantum Technologies Inc

ABOUT XANADU

Founded in 2016 | HQ in Toronto | 70+ people | 40+ PhDs | 15+ nationalities

			B	AT A	ask.	Bar	Bar	E		A STATE		F	9	Advisors:
C.S.	A AL	fan s	Cont.	(Fr an)		(Ball)			BD	- Contraction	R	19-31		
	Ca	(Pa)	alia)	Cold and		Contraction of the second seco	R			P		En en	010	

Founded in 2016	Funding: \$45M	Office & Hardware Lab in Toronto

What makes a qubit?

DiVincenzo criteria, 2000:

The Physical Implementation of Quantum Computation

DAVID P. DIVINCENZO

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 USA

Fortschr. Phys.4892000) 9-11, 771-783

<u>Requirements</u>

- 1. A scalable physical system with well characterized qubit
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Desiderata

- 1. The ability to interconvert stationary and flying qubits
- 2. The ability to faithfully transmit flying qubits between specified locations

PHOTONICS FOR QUANTUM COMPUTING: MATTER VS LIGHT-BASED QUBITS

At the time (c. 2000), matter-based qubits were generally assumed to be the only option

Blocker: Lack of single-photon level nonlinearity

<u>Requirements</u>

- 1. A scalable physical system with well characterized qubit
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Desiderata

- 1. The ability to interconvert stationary and flying qubits
- 2. The ability to faithfully transmit flying qubits between specified locations

"KLM" protocol for photonic quantum computing, 2001:

Published: 04 January 2001

A scheme for efficient quantum computation with linear optics

E. Knill 🖂, R. Laflamme & G. J. Milburn

Nature volume 409, pages 46-52(2001)

Showed that photonic QC was, in principle, possible without exotic photon-photon interactions.

Tradeoff: Lack of deterministic operation, leading to huge component counts.

PROS AND CONS OF PHOTONICS

	Photonics	Superconducting	Trapped ions		
Operating environment	Mostly room temperature, no vacuum	Cryostat @ 10mK	Vacuum chamber, laser cooling to nK		
Chip integration	Compatible with standard CMOS fabs	Specialized research/university fabs	Cannot be fully chip integrated		
Prospects for scaling	Modularity via telecom fiber-optic interconnects	No suitable interconnect yet demonstrated	Optical interconnect using UV/visible photonic elements		
Maturity of industry for components	Benefits from optical telecom industry components	Small market for superconducting electronics in other applications	Very little market for components outside scientific research		
Bandwidth/clock speeds	Ultrahigh bandwidth: GHz possible	kHz reset rates, gates can be reasonably fast	Slow reset times and gate speeds		

PROS AND CONS OF PHOTONICS

	Photonics	Superconducting	Trapped ions
Platform simplicity	Difficult to do everything in one material platform, need heterogeneous integration/multi-chip architecture	Qubits, gates, measurements done in same layer, control and readout done with RF pulses	Complicated laser control (many UV/visible beams required)
Component counts	Large due to non-deterministic elements	Moderate, but wiring inside cryostat is a serious challenge (cryoCMOS required?)	Low, also due to high fidelities allowing possibly lower overheads for fault tolerance

THE CASE FOR PHOTONICS

FASTER DEVELOPMENT

Much faster

prototyping cycles due to room

temperature QPUs

+ UNIQUE ENCODING

NCODING

Different NISQ applications and more ways to implement error correction

Can borrow many tools from optical telecom industry

LOWER

COST

(+)

Fiber interconnects distribute qubits across many chips

SCALABLE

& MODULAR

(+)

Natural interface with future quantum internet

NETWORK

COMPATIBLE

Copyright © 2021 Xanadu Quantum Technologies Inc.

XANADU'S ROADMAP TO UNIVERSAL QUANTUM COMPUTING

PHOTONIC QUANTUM COMPUTING ON THE CLOUD

Article | Published: 03 March 2021

Quantum circuits with many photons on a programmable nanophotonic chip

J. M. Arrazola 🖂, V. Bergholm, [...] Y. Zhang

Nature 591, 54–60(2021) | Cite this article 5753 Accesses | 144 Altmetric | Metrics

GAUSSIAN BOSON SAMPLING

Source: "Applications of near-term photonic quantum computers: Software and algorithms", T.R. Bromley et al., Quantum Science and Technology (2020)

GAUSSIAN BOSON SAMPLING

Quantum computational advantage using photons

Han-Sen Zhong^{1,2*}, Hui Wang^{1,2*}, Yu-Hao Deng^{1,2*}, Ming-Cheng Chen^{1,2*}, Li-Chao Peng^{1,2}, Yi-Han Luo^{1,2}, Jian Qin^{1,2}, Dian Wu^{1,2}, Xing Ding^{1,2}, Yi Hu^{1,2}, Peng Hu³, Xiao-Yan Yang³, Wei-Jun Zhang³, Hao Li³, Yuxuan Li⁴, Xiao Jiang^{1,2}, Lin Gan⁴, Guangwen Yang⁴, Lixing You³, Zhen Wang³, Li Li^{1,2}, Nai-Le Liu^{1,2}, Chao-Yang Lu^{1,2}, Jian-Wei Pan^{1,2+}

Source: "Applications of near-term photonic quantum computers: Software and algorithms", T.R. Bromley et al., Quantum Science and Technology (2020)

NANOPHOTONIC BUILDING BLOCKS

GAUSSIAN BOSON SAMPLING ON A CHIP

Equivalent quantum circuit

CONTROL SYSTEM (SIMPLIFIED)

SQUEEZER PERFORMANCE

Single-squeezer statistics

(0, 2)

Two-squeezer interference

GAUSSIAN BOSON SAMPLING: NEAR-TERM APPLICATIONS

GAUSSIAN BOSON SAMPLING WITH RANDOM PARAMETERS

- Randomized benchmark for device performance
- Compare experimental and theoretical distributions
- Good quantitative and qualitative agreement between experiment and theory

SIMULATION OF VIBRONIC SPECTRA

- Chemistry application unique to squeezing-based bosonic architecture
- Encode molecular structure directly in chip parameters

GRAPH SIMILARITY

- Graph-structured data encoded into X8 chip
- Readout statistics classify different graphs
- Clustering shows X8 can distinguish different graph structures

GBS FOR FAULT TOLERANT QUANTUM COMPUTING

- Architecture relies on GKP qubits, enabling two layers of error correction
- X8 chips are the building blocks for synthesizing GKP qubits
- Squeezed states help deal with non-deterministic GKP sources

Blueprint for a Photonic Fault-Tolerant Quantum Computer J. Eli Bourassa et al. Quantum 5, 392 (2021)

NANOPHOTONIC SOURCES OF SQUEEZED LIGHT

Wish list for integrated squeezing platform & device

	Low confinement PPLN	SiN OPOs above threshold	SiN microring below threshold
Nanophotonic system	X	\checkmark	\checkmark
Quadrature squeezing	\checkmark	Х	\checkmark
Photon counting compatible	\checkmark	X	\checkmark
Single temporal mode	?	X	\checkmark
No excess noise	\checkmark	X	\checkmark

Lenzini *et al.*, Sci. Adv. 4, eaat9331 (2018)

Dutt *et al.*, Phys. Rev. Applied 3, 044005 (2015) Vaidya et al., Sci. Adv. eaba9186 (2020) Zhang et al., Nat. Comm. (2021)

NANOPHOTONIC MOLECULES FOR DEGENERATE SQUEEZING

Copyright © 2021 Xanadu Quantum Technologies Inc.

NANOPHOTONIC MOLECULES FOR DEGENERATE SQUEEZING

Similar setup to before, HNLF added to generate a tighter phase lock

Similar setup to before, HNLF added to generate a tighter phase lock

Zhang *et al.*, "Squeezed Light from a Nanophotonic Molecule" Nature Communications (2021)

Copyright © 2021 Xanadu Quantum Technologies Inc.

Join us!

Full-time positions available - xanadu.ai/careers

zach@xanadu.ai

XANADI

h:

Copyright © 2021 Xanadu Quantum Technologies Inc.

X