A dream comes true:
Room-temperature superconductivity
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Vostok base in Antarctica

In 1983 a temperature of -89.2 °C was registered



Fontana Luminosa, L'Aquila

In January 201/ a temperature of -12.0 °C was registered
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Superconductors

It is a common phenomenon Persistent current: no Joule effect Meissner effect
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A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual

exchange of phonons 1s attractive when the energy difference

between the electrons states involved 1s less than the phonon
energy, #iw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch

individual-particle model. 'The ground state of a superconductor,
formed from a linear combination of normal state configurations

in which electrons are virtually excited i pairs of opposite spin
and_momentum, is lower in_energy than the normal state by
amount proportional to an average (%w)% consistent with the
isotope effect. A mutually orthogonal set of excited states in

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5k7, at T=0°K to zero at T.. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.
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BCS predictions

The BCS ground state has a lower energy A wrt the free-electron state, which depends on the temperature
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BCS predictions

The BCS ground state has a lower energy A wrt the free-electron state, which depends on the temperature
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The first microscopic theory of SC The Tc formula is wrong
Explains many experimental evidences No Coulomb interaction

The Tcformula is simple No retardation effects
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The electron-electron interaction mediated by phonons is time-dependent
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The electron-electron interaction mediated by phonons is time-dependent
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Neil's (Ashcroft) answer

VoLUME 21, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 1968

METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR?

N. W. Ashcroft
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850

(Received 3 May 1968)

Application of the BCS theory to the proposed metallic modification of hydrogen sug-
gests that it will be a high~-temperature superconductor. This prediction has interesting
astrophysical consequences, as well as implications for the possible development of a
superconductor for use at elevated temperatures.
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Which is the best superconductor?

Neil’s (Ashcroft) answer

TC:u) L2 -1/A

VOLUME OM/\O

~w=59rt(K/M): low mass, w large

-No screening: the electron-phonon L
e o
coupling ts high

~High-pressure: € kin >> E_coul, metal

Hydrogen under high pressure is a

(high-T) superconductor




But hydrogen is (always) an insulator

where is the metal?




ON SUPERCONDUCTIVITY AND
SUPERFLUIDITY

Nobel Lecture, December 8, 2003
by
Vitary L. GINZBURG

P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia.

1. Controlled nuclear fusion.

2. High-temperature and room-temperature superconductivity (HTSC and RTSC).

3. Metallic hydrogen. Other exotic substances.

4. Two-dimensional electron liquid (anomalous Hall effect and other efsfects).

5. Some questions of solid-state physics (heterostructures in semiconductors, quantum wells and
dots, metal — dielectric transitions, charge and spin density waves, mesoscopics).

7. Surface physics. Clusters.

8. Liquid crystals. Ferroelectrics. Ferrotoroics. | | o
9, Fullerenes. Nanotubes. “pioneering contributions to the theory

10. The behavior of matter in superstrong magnetic fields. of superconductors and superfluids”
11. Nonlinear physics. Turbulence. Solitons. Chaos. Strange attractors.

12. X-ray lasers, gamma-ray lasers, superhigh-power lasers.

13. Superheavy elements. Exotic nuclei.

22. Gravitational waves and their detection.

27 The problem of dark matter (hidden mass) and its detection.
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Metallic hydrogen: The holy grail of physics

1968: Ashcroft's proposal

1981: Phase Il discovered

Deuterium Hydrogen
1899: Dewar produces
solid hydrogen 1935: Wigner predicted metallic
hydrogen at 25 GPa
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1988: Phase Il

The pressure is too high, experiments too complicated,
......... theoretical predictions are welcome for both
normal and superconducting properties.

1996: Nellis produces liquid metallic
hydrogen (140 GPa and 3000K)



The Density Functional Theory
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Inhomogeneous Electron Gas*
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AND

W. Konni

Ecole Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France
and
Umniversity of California at San Diego, La Jolla, California
(Received 18 June 1964)

'This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional ot the density, F| #(r) |, independent of v(r), such that the ex-
pression E= [v(t)n(E)ar T F L7 (E) ] NAs as 1t MINImum value the correct ground-state energy associated with
v(r). The functional F[x(r)] is then discussed for two situations: (1) 7(r) =ne+7(r), %/ne<<1, and
(2) n(r) = o(r/ro) with ¢ arbitrary and 7o — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.
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Super Conducting Density Functional Theory (2005)

Kohn-Sham system for superconductor

H:He+Hen+Hn+H€Xf

p(r) = Trloo ) v (e <r>]

x(rr) = Tr ;Qo U (N gy (r')]

F(R) = Tr|oo| |2 (R))2(R))
! J



Super Conducting Density Functional Theory (2005)

Kohn-Sham system for superconductor
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Ab initio theory of superconductivity. I. Density functional formalism and approximate
functionals

M. Liiders,"> M. A. L. Marques,>> N. N. Lathiotakis,>* A. Floris,>* G. Profeta,> L. Fast,>® A. Continenza,” S. Massidda,**
and E. K. U. Gross*3

An approach to the description of superconductors in thermal equilibrium is developed within a formally
exact density functional framework. The theory is formulated in terms of three “densities:” the ordinary
electron density, the superconducting order parameter, and the diagonal of the nuclear N-body density matrix.
The electron density and the order parameter are determined by Kohn-Sham equations that resemble the
Bogoliubov—de Gennes equations. The nuclear density matrix follows from a Schrodinger equation with an
effective N-body interaction. These equations are coupled to each other via exchange-correlation potentials
which are universal functionals of the three densities. Approximations of these exchange-correlation function-
als are derived using the diagrammatic techniques of many-body perturbation theory. The bare Coulomb
repulsion between the electrons and the electron-phonon interaction enter this perturbative treatment on the

same footing. In this way, a truly ab initio description is achieved which does not contain any empirical
parameters. A — —
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Hydrogen metallization: P > 450 GPa

Modern anvil cell reaches 350 GPa

Pressure in the inner core of earth
is about 330 GPa!
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Better call Ashcroft

week ending
VOLUME 92, NUMBER 18 PHYSICAL REVIEW LETTERS 7 MAY 2004

Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?

N.W. Ashcroft

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853-2501, USA
Donostia International Physics Center, San Sebastian, Spain
(Received 29 December 2003; published 6 May 2004)

The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a
candidate for high temperature superconductivity are shown to apply with comparable weight to alloys
of metallic hydrogen where hydrogen is a dominant constituent, for example, in the dense group I'Va
hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil
cells, but at pressures considerably Iower than may be necessary 1or nydrogen.
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Superconductivity in Hydrogen ol o

Dominant Materials: Silane

SiH,
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€ 161 Temperature, [K ]
M. I. Eremets,™* I. A. Trojan,*t S. A. Medvedev,* ]. S. Tse,? Y. Yao® S 192 GPa 15 20 25 3( o

o 00 -
The metallization of hydrogen directly would require pressure in excess of 400 gigapascals (GPa), % E (e A
out of the reach of present experimental techniques. The dense group 1Va hydrides attract @ 12+ 125 GPa ° )
considerable attention because hydrogen in these compounds is chemically precompressed and a ] ) 100 °
metallic state is expected to be achievable at experimentally accessible pressures. We report the o |
transformation of insulating molecular silane to a metal at 50 GPa, becoming superconducting at a 2 50
transition temperature of T, = 17 kelvin at 96 and 120 GPa. The metallic phase has a hexagonal
close-packed structure with a high density of atomic hydrogen, creating a three-dimensional A 8[ ) . oLl i 5 ) . ) . )
conducting network. These experimental findings support the idea of modeling metallic 0 100 200 300 50 100 150 200
hydrogen with hydrogen-rich alloy. Temperature, K Pressure, GPa
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Hydrides at high pressure: search by computers
o s\ S

Crystals from first principles

by J. Maddox

ONE of the continuing scandals in the
- physical sciences is that it remains in
general impossible to predict the structure
of even the simplest crystalline solids from
a knowledge of their chemical composi-
tton. Who, for example, would guess that
graphite, not diamond, is the thermo-
dynamically stable allotrope of carbon at
ordinary temperature and pressure?
Solids such as crystalline water (ice) are
still thought to lie beyond mortals’ ken.
Yet one would have thought that, by
now, it should be possible to equip a suffi- |
ciently large computer with a sufficiently
large program, type in the formula of the
chemical and obtain, as output, the atomic
coordinates of the atoms in a unit cell.
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Genetic Algorithms

Ab-initio random structure searching
(The Columbus egg)
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Hydrogen sulfide: the chemistry changes

Discovered in 1777

Itis a colorless gas with the characteristic foul odor of
rotten eggs.

It is very poisonous, corrosive, and flammable, explosive


https://en.wikipedia.org/wiki/Gas
https://en.wikipedia.org/wiki/Egg_(food)

Hydrogen sulfide: the chemistry changes

. . Al B 2
Discovered in 1777 ‘”u\g }\(

Itis a colorless gas with the characteristic foul odor of
rotten eggs.

It is very poisonous, corrosive, and flammable, explosive

THE JOURNAL OF CHEMICAL PHYSICS 140, 174712 (2014) @

The metallization and superconductivity of dense hydrogen sulfide
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tremets’s experiment
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Conventional superconductivity at 203 kelvin at high

pressures in the sulfur hydride system
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Flury of predictions

Periodic table of binary hydride superconductors
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The discovery of superconductivity at 200 kelvin in the hydrogen sulfide system at
high pressures' demonstrated the potential of hydrogen-rich materials as high-
temperature superconductors. Recent theoretical predictions of rare-earth hydrides
with hydrogen cages*® and the subsequent synthesis of LaH,, with asuperconducting
critical temperature (T,) of 250 kelvin** have placed these materials on the verge of
achieving the long-standing goal of room-temperature superconductivity. Electrical
and X-ray diffraction measurements have revealed a weakly pressure-dependent 7_for
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The Periodic Table of Superconducting Hydrides
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Periodic table of binary hydride superconductors
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One of the long-standing challenges in experimental physics is the observation of
room-temperature superconductivity'. Recently, high-temperature conventional
superconductivity in hydrogen-rich materials has been reported in several systems

under high pressure®=. An important discovery leading to room-temperature
superconductivity is the pressure-driven disproportionation of hydrogen sulfide
(H,S) to H,S, with a confirmed transition temperature of 203 kelvin at 155
gigapascals®®. Both H,S and CH, readily mix with hydrogen to form guest-host
structures at lower pressures’, and are of comparable size at 4 gigapascals. By
introducing methane at low pressures into the H,S + H, precursor mixture for

H,S, molecular exchange is allowed within a large assemblage of van der Waals solids
that are hydrogen-rich with H, inclusions; these guest-host structures become the
building blocks of superconducting compounds at extreme conditions. Here we
report superconductivity ina photochemically transformed carbonaceous sulfur

hydride system, starting from elemental precursors, with amaximum

superconducting transition temperature of 287.7 £ 1.2 kelvin (about 15 degrees
Celsius) achieved at 267 +10 gigapascals. The superconducting state is observed over
abroad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a
sharp upturnin transition temperature above 220 gigapascals. Superconductivity is
established by the observation of zero resistance, amagnetic susceptibility of up to
190 gigapascals, and reduction of the transition temperature under an external
magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla
according to the Ginzburg-Landau model at zero temperature. The light, quantum
nature of hydrogen limits the structural and stoichiometric determination of the
system by X-ray scattering techniques, but Raman spectroscopy is used to probe the
chemical and structural transformations before metallization. The introduction of
chemical tuning within our ternary system could enable the preservation of the
properties of room-temperature superconductivity at lower pressures.
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superconductivity is the pressure-driven disproportionation of hydrogen sulfide
(H,S) to H,S, with a confirmed transition temperature of 203 kelvin at 155
gigapascals®®. Both H,S and CH, readily mix with hydrogen to form guest-host
structures at lower pressures’, and are of comparable size at 4 gigapascals. By
introducing methane at low pressures into the H,S + H, precursor mixture for

H,S, molecular exchange is allowed within a large assemblage of van der Waals solids
that are hydrogen-rich with H, inclusions; these guest-host structures become the
building blocks of superconducting compounds at extreme conditions. Here we
report superconductivity ina photochemically transformed carbonaceous sulfur

hydride system, starting from elemental precursors, with a maximum
superconducting transition temperature of 287.7 £ 1.2 kelvin (about 15 degrees

Celsius) achieved at 267 +10 gigapascals. The superconducting state is observed over

abroad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a
sharp upturnin transition temperature above 220 gigapascals. Superconductivity is
established by the observation of zero resistance, amagnetic susceptibility of up to
190 gigapascals, and reduction of the transition temperature under an external
magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla
according to the Ginzburg-Landau model at zero temperature. The light, quantum
nature of hydrogen limits the structural and stoichiometric determination of the
system by X-ray scattering techniques, but Raman spectroscopy is used to probe the
chemical and structural transformations before metallization. The introduction of
chemical tuning within our ternary system could enable the preservation of the
properties of room-temperature superconductivity at lower pressures.
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From room temperature to ambient pressure: follow the hydrogen route
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Any suggestions?
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Why and how does it happen?

Frohlich (1952) Hrp =H.+ H,+ H,
_ T 1
He = Z €k Ck,o Ckio Hy = Z hwq,k[ngbqk T 5]
k.o g,

> > 913 A Ck—l—q—l—G o Cko [bq/\ T bJr—q/\]
ko q,GX\




Why and how does it happen?

Frohlich (1952) Hrp =H.+ H,+ H,
_ T 1
He — kz Ek Ck,O’ Ck’o' Hp — Zhw(L)‘[b(—;)\bq)\ —|— 5]
o q,\

> > 913 A Ck—l—q—l—G o Cko [bq/\ T bT—q/\]
ko q,GX\

Define an effective hamiltonian (not terms which couple e and ph)

T =Y e cf 1 S i i
HF — €k Cr,Cko 5 Vph Ck—l—q—l—Ga Ck’—q—Ga’ Ct'o’ Cko
ko kk’qG

/
o0

hwga 19(g + G5 VI
Vpn = : :
. z; €k — €ktq+a)° — [wgal?

if <0 attraction !!
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