An Experimental Tour Through
Some of the Unique Properties of Graphene

Alberto Morpurgo (University of Geneva)
What is Graphene?

Conjugated structures of Carbon atoms

0D
Fullerenes

1D
Nanotubes

2D
Graphene

Carbon Electronics
Up to mm size exfoliated graphene
Seeing one-atom layers one at a time
A simple tight-binding

Two inequivalent C atoms

\[H = t \sum_{i,j} \left(A_{\vec{R}_i} A_{\vec{R}_j} + B_{\vec{R}_j} B_{\vec{R}_i} \right) \]

Solutions are plane waves

\[|\psi_k\rangle = \left(\alpha_k \sum_i e^{ik\vec{R}_i} A_{\vec{R}_i}^\dagger + \beta_k \sum_j e^{ik\vec{R}_j} B_{\vec{R}_j}^\dagger \right) |0\rangle \]

OR

\[|\psi_k\rangle = \sum_i e^{ik\vec{R}_i} \begin{pmatrix} \alpha_k A_{\vec{R}_i}^\dagger \\ \beta_k B_{\vec{R}_j}^\dagger \end{pmatrix} |0\rangle \]

pseudo spin
2D Dirac Massless Electrons in Graphene

\[\hbar v_F \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix} \begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} = E(k) \begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} \]

\[\vec{q} = \vec{K} + \vec{k} \]

Linear dispersion relation

Semimetal

Two atoms in unit cell

Two K-points

Zero mass

Zero-gap semiconductor

Pseudo-spin + Chiral electrons

New quantum numbers
Graphene Transistors

Novoselov/Geim 2004

Graphene
First generation

Silicon
Integrated circuits

\[\rho \sim 10,000 \text{ cm}^2/\text{Vs} \]

\[\rho \sim 1,000 \text{ cm}^2/\text{Vs} \]
Quantum Hall effect of Dirac fermions

Novoselov/Geim; Kim – November 2005
Quantum Dynamics of Electrons

Schrödinger: Non-relativistic

\[-\frac{\hbar^2}{2m} \Delta + V(\vec{r}) \psi = E\psi \]

Dirac: Relativistic

\[\left(\gamma^\mu \frac{\partial}{\partial x^\mu} + \frac{mc}{\hbar} \right) \psi = 0 \]

Ex.: Integrated Electronics

High-Energy Particle Physics
Large area graphene - CVD

Heat Methane at 1000 C

Polymer layer to support graphene

On Copper substrate:
Methane decomposes
Graphene grows

Remove Copper: wet etching

Final step:
Transfer Graphene

Ruoff/Kong/Samsung 2009
Process is robust: after ~ 6 months of lab scale work
Produce by the meter – sell by the inch

Roll-to-roll synthesis of graphene
Ease of access + Gate tuning

Superconducting electronics

Spintronics

Van Wees 2007
Single Molecule Detection

1 molecule donates/ remove 1 electron

Detect change of resistivity

Novoselov/Geim 2007
1, 2, 3... More is different

Linear

Parabolic

Small Band overlap
Tunable band structure

Ex.: Silicon band structure

Band structure of conventional Semiconductors

Fixed once you pick a material!

Band structure of few-layer graphene can be tuned using gates
Double gating

Top gate

Bottom gate

Single layer

Double layer

Band-gap opening in nano-electronic devices
Turning bilayers into insulators

Chiral particles with quadratic dispersion

\[H = \alpha \begin{pmatrix} \Delta & (k_x - ik_y)^2 \\ (k_x + ik_y)^2 & -\Delta \end{pmatrix} \]
Topological confinement

Lateral confinement in Bilayer graphene

“Normal” confinement

“Topological” confinement

Chiral zero modes

Gate electrode
Gate insulator

Martin, Blanter, Morpurgo 2008
Topology in k-space

\[H = \begin{pmatrix} \Delta & (k_x - ik_y)^2 \\ (k_x + ik_y)^2 & -\Delta \end{pmatrix} = -g(k) \cdot \sigma \]

With J. Li, M. Büttiker, I. Martin 2010

General expression for topological invariant

\[N = \frac{e \mu \nu \lambda}{24 \pi^2} \text{Tr} \int d^2k d k_0 G \partial_{k_\mu} G^{-1} G \partial_{k_\nu} G^{-1} G \partial_{k_\lambda} G^{-1} \]

For 2 x 2 case

Hall conductance

\[\sigma_H = N = \frac{1}{4\pi} \int d^2k \hat{g} \cdot (\partial_{k_x} \hat{g} \times \partial_{k_y} \hat{g}) \]

\[\hat{g}(k) \] texture on one side of kink

Number of zero-modes is topologically protected
Ex.: Gate tunable light source

Gallium Arsenide

Tunable light sources
from THz to far infrared

Frequency fixed by gap Δ
$\Delta = h\nu$

Graphene bilayer=
Tunable gap
Trilayer: the opposite effect

Each « layer sequence » is a different material
Cleaning graphene

Observing the interactions between Dirac electrons

Exploring new substrates

Lau 2012

Kim 2010
Few atom thick crystals

High-quality transistor action in metal dichalcogenides
Kis 2011

Gate-induced superconductivity in ZrNCl
Iwasa 2010

Surface states in topological insulators
AM 2011
Nuclear Magnetic Resonance Imaging

1944: for his resonance method for recording the magnetic properties of atomic nuclei

1952: for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith

1977: First MRI scan on humans

Today
2000: for the discovery and development of conductive polymers

1985: First semiconductor devices (OLEDs, Solar cells)

~1975

Today:

OLED TV

Flexible screens

Organic Conductors and Semiconductors

H.J. Heeger A.G. MacDiarmid H. Shirakawa
Graphene

2010: for groundbreaking experiments regarding the two-dimensional material graphene

Already demonstrated today
- Transparent electrodes
- Molecular sensors
- High-frequency switches
- Optical sources
- Composite materials
- Photonic devices
- ...

Tomorrow?