How to determine the masses of the lightest quarks

Gilberto Colangelo

 $\boldsymbol{u}^{\scriptscriptstyle{b}}$

b UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Università di Pavia, 31.5.18

Outline

Introduction QCD Chiral perturbation theory

How to determine $m_u - m_d$

 $\eta
ightarrow 3\pi$ and QThe $\eta
ightarrow 3\pi$ amplitude

Summary

Work in collaboration with S. Lanz, H. Leutwyler and E. Passemar PRL 118 (17) 022001 and in progress

Lagrangian leading to Maxwell equations

$$\mathcal{L}_{\text{Maxwell}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $A_{\mu} = (\phi, \vec{A}), \ j_{\mu} = (\rho, \vec{A})$

Lagrangian leading to Maxwell equations

$$\mathcal{L}_{\text{Maxwell}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $A_{\mu} = (\phi, \vec{A}), j_{\mu} = (\rho, \vec{A})$

At the microscopic level, the current is made out of fermions, described by Dirac's theory:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} \left[\sum_{i} \boldsymbol{e}_{i} \bar{\psi}_{i} \gamma_{\mu} \psi_{i} \right] + \sum_{i} \bar{\psi}_{i} \left[i \partial_{\mu} \gamma^{\mu} - \boldsymbol{m}_{i} \right] \psi_{i}$$

Lagrangian leading to Maxwell equations

$$\mathcal{L}_{\text{Maxwell}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $A_{\mu} = (\phi, \vec{A}), \ j_{\mu} = (\rho, \vec{A})$

At the microscopic level, the current is made out of fermions, described by Dirac's theory:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{i} \bar{\psi}_{i} \left[i(\partial_{\mu} + i e_{i} A_{\mu}) \gamma^{\mu} - m_{i} \right] \psi_{i}$$

Lagrangian leading to Maxwell equations

$$\mathcal{L}_{\text{Maxwell}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $A_{\mu} = (\phi, \vec{A}), j_{\mu} = (\rho, \vec{A})$

At the microscopic level, the current is made out of fermions, described by Dirac's theory:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{i} \bar{\psi}_{i} \left[i D_{\mu} \gamma^{\mu} - m_{i} \right] \psi_{i}$$

QED is a gauge theory=theory defined by local invariance $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ the relevant covariant derivative

Lagrangian leading to Maxwell equations

$$\mathcal{L}_{\text{Maxwell}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - A_{\mu} j^{\mu}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$
 $A_{\mu} = (\phi, \vec{A}), j_{\mu} = (\rho, \vec{A})$

At the microscopic level, the current is made out of fermions, described by Dirac's theory:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{i} \bar{\psi}_{i} \left[i \not\!\!D - m_{i} \right] \psi_{i}$$

QED is a gauge theory=theory defined by local invariance $D_{\mu} = \partial_{\mu} + ieA_{\mu}$ the relevant covariant derivative

Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

$$QED: U(1) \longrightarrow QCD: SU(3)$$

and the covariant derivative changes accordingly

$$D_{\mu} = \partial_{\mu} + ieA_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + igA^{a}_{\mu}\lambda_{a} \quad (a = 1, \dots 8)$$

Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

 $QED: U(1) \longrightarrow QCD: SU(3)$

and the covariant derivative changes accordingly

$$D_{\mu} = \partial_{\mu} + \textit{ieA}_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + \textit{igA}_{\mu}$$

Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

$$QED: U(1) \longrightarrow QCD: SU(3)$$

and the covariant derivative changes accordingly

$$D_{\mu} = \partial_{\mu} + i e A_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + i g A_{\mu}$$

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{4} ext{Tr} \left[G_{\mu
u} G^{\mu
u}
ight] + \sum_i ar{q}_i (i D - m_{q_i}) q_i$$

Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

$$QED: U(1) \longrightarrow QCD: SU(3)$$

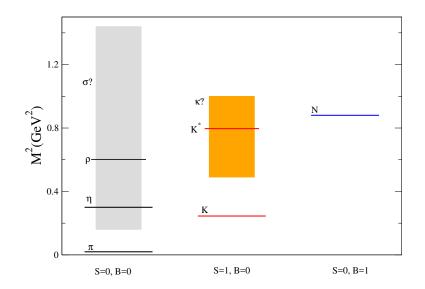
and the covariant derivative changes accordingly

$$D_{\mu} = \partial_{\mu} + i e A_{\mu} \longrightarrow D_{\mu} = \partial_{\mu} + i g A_{\mu}$$

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{4} ext{Tr} \left[G_{\mu
u} G^{\mu
u}
ight] + \sum_i ar{q}_i (i D - m_{q_i}) q_i$$

The behaviour of QED and QCD is very different Determining the fermion masses m_i in the two theories is a completely different matter

QCD χ PT



QCD χ PT

Quark masses

QCD Lagrangian:

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{4} ext{Tr} \mathcal{G}_{\mu
u} \mathcal{G}^{\mu
u} + \sum_i ar{q}_i (i
ot\!\!\!/ - m_{q_i}) q_i + \sum_j ar{Q}_j (i
ot\!\!\!/ - m_{Q_j}) Q_j$$

- ▶ In the limit $m_{q_i} \rightarrow 0$ and $m_{Q_i} \rightarrow \infty$: $M_{\text{hadrons}} \propto \Lambda$
- Observe that $m_{q_i} \ll \Lambda$ while $m_{Q_i} \gg \Lambda$ [$\Lambda \sim M_N$]

 Quarks do not propagate: quark masses are coupling constants! (not observables)

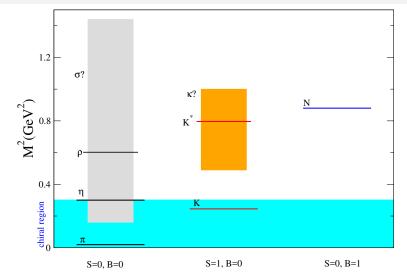
they depend on the renormalization scale μ (like $\alpha_{\rm s}$) for light quarks by convention: $\mu= 2~{\rm GeV}$

The QCD spectrum

 the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χPT)

QCD χ PT



- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χPT)
- the positions of the low-lying resonances is more difficult to determine and understand

- the lowest-lying particles in the spectra are well understood: they would become exactly massless in the chiral limit of QCD (Goldstone bosons)
- the dynamics of strong interactions at low energy can be understood on the basis of chiral symmetry (chiral perturbation theory = χPT)
- the positions of the low-lying resonances is more difficult to determine and understand
- they set the limit of validity of the chiral expansion

 If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green (correlation) functions contain poles and cuts due to the exchange of Goldstone bosons

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green (correlation) functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green (correlation) functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations
- effective Lagrangian: systematic method to construct this expansion, respecting symmetry and all the general principles of quantum field theory

- If a symmetry is spontaneously broken the spectrum contains massless particles – the Goldstone bosons
- symmetry constrains the interactions of the Goldstone bosons – their interactions vanish at low energy
- Green (correlation) functions contain poles and cuts due to the exchange of Goldstone bosons
- the vertices, on the other hand, can be expanded in powers of momenta and obey symmetry relations
- effective Lagrangian: systematic method to construct this expansion, respecting symmetry and all the general principles of quantum field theory
- The method leads to predictions even very sharp ones

Quantum Chromodynamics in the chiral limit

$$\mathcal{L}_{\rm QCD}^{(0)} = -\frac{1}{4} {\rm Tr} G_{\mu\nu} G^{\mu\nu} + \bar{q}_L i \not\!\!D q_L + \bar{q}_R i \not\!\!D q_R$$

$$q = \left(egin{array}{c} u \ d \ s \end{array}
ight)$$

Large global symmetry group:

$$SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$$

1.
$$U(1)_V \Rightarrow$$
 baryonic number

2. $U(1)_A$ is anomalous

3.

$$SU(3)_L \times SU(3)_R \Rightarrow SU(3)_V$$

 \Rightarrow Goldstone bosons with the quantum numbers of pseudoscalar mesons will be generated

Quark masses, chiral expansion

In the real world quarks are not massless:

$$\mathcal{L}_{QCD} = \mathcal{L}_{QCD}^{(0)} + \mathcal{L}_m, \qquad \mathcal{L}_m := -\bar{q}\mathcal{M}q$$
 $\mathcal{M} = \begin{pmatrix} m_u & & \\ & m_d & \\ & & m_s \end{pmatrix}$

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{QCD}^{(0)} \equiv$ Expand in powers of m_q

Quark masses, chiral expansion

In the real world quarks are not massless:

$$\mathcal{L}_{QCD} = \mathcal{L}_{QCD}^{(0)} + \mathcal{L}_m, \qquad \mathcal{L}_m := -\bar{q}\mathcal{M}q$$
 $\mathcal{M} = \begin{pmatrix} m_u & & \\ & m_d & \\ & & m_s \end{pmatrix}$

the mass term \mathcal{L}_m can be considered as a small perturbation \Rightarrow Expand around $\mathcal{L}_{QCD}^{(0)} \equiv$ Expand in powers of m_q

Chiral perturbation theory, the low-energy effective theory of QCD, is a simultaneous expansion in powers of momenta and quark masses

General quark mass expansion for the *P* particle:

$$M_P^2 = M_0^2 + \langle P | ar{q} \mathcal{M} q | P
angle + O(m_q^2)$$

For the pion $M_0^2 = 0$:

$$M_\pi^2=-(m_u+m_d)rac{1}{F_\pi^2}\langle 0|ar{q}q|0
angle+O(m_q^2)$$

where we have used a Ward identity:

$$\langle \pi | \bar{q} q | \pi
angle = - rac{1}{F_\pi^2} \langle 0 | \bar{q} q | 0
angle =: B_0$$

 $\langle 0|\bar{q}q|0\rangle$ is an order parameter for the chiral spontaneous symmetry breaking Gell-Mann, Oakes and Renner (68)

Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Consider the whole pseudoscalar octet:

$$M_{\pi}^{2} = (m_{u} + m_{d})B_{0} + O(m_{q}^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s})B_{0} + O(m_{q}^{2})$$

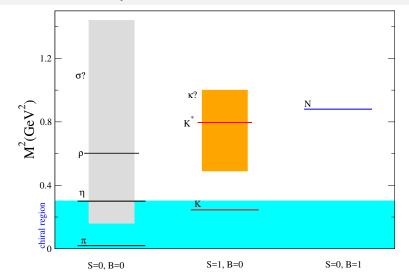
$$M_{K^{0}}^{2} = (m_{d} + m_{s})B_{0} + O(m_{q}^{2})$$

$$M_{\eta}^{2} = \frac{1}{3}(m_{u} + m_{d} + 4m_{s})B_{0} + O(m_{q}^{2})$$

Consequences:

 $(\hat{m}=(m_u+m_d)/2)$

 $\begin{array}{rcl} M_K^2/M_\pi^2 &=& (m_s + \hat{m})/2\hat{m} & \Rightarrow m_s/\hat{m} = 25.9 \\ M_\eta^2/M_\pi^2 &=& (2m_s + \hat{m})/3\hat{m} & \Rightarrow m_s/\hat{m} = 24.3 \\ 3M_\eta^2 &=& 4M_K^2 - M_\pi^2 & \text{Gell-Mann-Okubo (62)} \\ (0.899 &=& 0.960) \text{ GeV}^2 \end{array}$



How to determine quark masses

From their influence on the spectrum

 χ PT, lattice

•
$$m_Q \gg \Lambda$$

$$M_{\bar{Q}q_i} = m_Q + \mathcal{O}(\Lambda)$$

• $m_q \ll \Lambda$

$$M_{\bar{q}_i q_j} = M_{0\,ij} + \mathcal{O}(m_{q_i}, m_{q_j}) \qquad M_{0\,ij} = \mathcal{O}(\Lambda)$$

In both cases need to understand the $\mathcal{O}(\Lambda)$ term

From their influence on any other observable xPT, sum rules

Quark masses are coupling constants \Rightarrow exploit the sensitivity to them of any observable [e.g. η decays, spectral functions from τ decays, etc.]

Isospin symmetry

Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if $m_u = m_d$

$$\mathcal{L}_{ ext{QCD}} = \mathcal{L}_{ ext{QCD}}^{(0)} - \hat{m}(ar{u}u + ar{d}d)$$

Isospin symmetry

Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if $m_u = m_d$ $q = \begin{pmatrix} u \\ d \end{pmatrix}$

$$\mathcal{L}_{\mathrm{QCD}} = \mathcal{L}_{\mathrm{QCD}}^{(0)} - \hat{m}\bar{q}q$$

Isospin symmetry

Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if $m_u = m_d$ $q = \begin{pmatrix} u \\ d \end{pmatrix}$

$$\mathcal{L}_{ ext{QCD}} = \mathcal{L}_{ ext{QCD}}^{(0)} - \hat{m} ar{q} q$$

Broken by:

 $m_u \neq m_d$ and $Q_u \neq Q_d$

strong and electromagnetic interactions

$m_d + m_u$ is easier to get than $m_d - m_u$

$$m_d, m_u \ll \Lambda \Rightarrow \mathcal{L}_m = -m_u \bar{u}u - m_d \bar{d}d = \text{small perturbation}$$

However:

$$\mathcal{L}_{m} = -\frac{m_{d} + m_{u}}{2}(\bar{u}u + \bar{d}d) + (m_{d} - m_{u})\frac{\bar{u}u - \bar{d}d}{2}$$
$$= -\hat{m}\underbrace{\bar{q}q}_{\mathcal{O}_{l=0}} + (m_{d} - m_{u})\underbrace{\bar{q}\tau_{3}q}_{\mathcal{O}_{l=1}}$$

selection rules make the effect of $\mathcal{O}_{l=1}$ well hidden

 $\Rightarrow \hat{m} \text{ responsible for the mass of pions}$ but $(m_d - m_u)$ only contributes at $\mathcal{O}(p^4)$

(a tiny δM_{π^0})

better sensitivity in *K* masses but the em interaction competes as a source of isospin breaking

Outline

Introduction QCD Chiral perturbation theory

How to determine $m_u - m_d$

```
\eta 
ightarrow 3\pi and Q
The \eta 
ightarrow 3\pi amplitude
```

Summary

First estimates

Leading-order masses of π and *K*:

$$M_{\pi}^2 = B_0(m_u + m_d) \quad M_{K^+}^2 = B_0(m_u + m_s) \quad M_{K^0}^2 = B_0(m_d + m_s)$$

Quark mass ratios:

$$\frac{m_u}{m_d} \simeq \frac{M_{\pi^+}^2 - M_{K^0}^2 + M_{K^+}^2}{M_{\pi^+}^2 + M_{K^0}^2 - M_{K^+}^2} \simeq 0.67$$
$$\frac{m_s}{m_d} \simeq \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} \simeq 20$$

 $m_{ud} \equiv (m_u + m_d)/2 \simeq 5.4 \; {
m MeV}$ SU(6) relation, Leutwyler (74)

From an analysis of the *p*-*n* mass difference:

Gasser & Leutwyler (75)

 $m_u \simeq 4 \; {
m MeV} \qquad m_d \simeq 6 \; {
m MeV} \qquad m_s \simeq 135 \; {
m MeV}$

Electromagnetic corrections to the masses

According to Dashen's theorem

Dashen (69)

$$\begin{split} M_{\pi^0}^2 &= B_0(m_u + m_d) \\ M_{\pi^+}^2 &= B_0(m_u + m_d) + \Delta_{\rm em} \\ M_{K^0}^2 &= B_0(m_d + m_s) \\ M_{K^+}^2 &= B_0(m_u + m_s) + \Delta_{\rm em} \end{split}$$

Extracting the quark mass ratios gives

Weinberg (77)

$$\frac{m_u}{m_d} = \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56$$
$$\frac{m_s}{m_d} = \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.1$$

Intro $m_u - m_d$ $\eta \rightarrow 3\pi$ and Q Summary

Higher order chiral corrections

Mass formulae to second order

Gasser-Leutwyler (85)

$$\frac{M_{K}^{2}}{M_{\pi}^{2}} = \frac{m_{s} + \hat{m}}{2\hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$
$$\frac{M_{K^{0}}^{2} - M_{K^{+}}^{2}}{M_{K}^{2} - M_{\pi}^{2}} = \frac{m_{d} - m_{u}}{m_{s} - \hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$
$$\Delta_{M} = \frac{8(M_{K}^{2} - M_{\pi}^{2})}{F_{\pi}^{2}} (2L_{8} - L_{5}) + \chi \text{-logs}$$

The same $\mathcal{O}(m)$ correction appears in both ratios \Rightarrow this double ratio is free from $\mathcal{O}(m)$ corrections

$$Q^{2} \equiv \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{M_{K^{0}}^{2} - M_{K^{+}}^{2}} \left[1 + \mathcal{O}(m^{2})\right]$$

Intro $m_u - m_d$ $\eta \rightarrow 3\pi$ and Q Summary

Higher order chiral corrections

Mass formulae to second order

Gasser-Leutwyler (85)

$$\frac{M_{K}^{2}}{M_{\pi}^{2}} = \frac{m_{s} + \hat{m}}{2\hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$
$$\frac{M_{K^{0}}^{2} - M_{K^{+}}^{2}}{M_{K}^{2} - M_{\pi}^{2}} = \frac{m_{d} - m_{u}}{m_{s} - \hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$
$$\Delta_{M} = \frac{8(M_{K}^{2} - M_{\pi}^{2})}{F_{\pi}^{2}} (2L_{8} - L_{5}) + \chi \text{-logs}$$

The same $\mathcal{O}(m)$ correction appears in both ratios \Rightarrow this double ratio is free from $\mathcal{O}(m)$ and em corrections

$$Q_D^2 \equiv \frac{(M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2 + M_{\pi^0}^2)(M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2 - M_{\pi^0}^2)}{4M_{\pi^0}^2(M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2 - M_{\pi^0}^2)} = 24.3$$

Intro $m_u - m_d$ $\eta \rightarrow 3\pi$ and Q Summary

Violation of Dashen's theorem

In pure QCD ($\hat{M}_P \equiv M_{P|_{\alpha_{em}=0}}$)

$$\hat{M}_{K^+} = B_0(m_s + m_u) + \mathcal{O}(m_q^2)$$

 $\hat{M}_{K^0} = B_0(m_s + m_d) + \mathcal{O}(m_q^2)$

$$\Rightarrow \quad \hat{M}_{K^+} - \hat{M}_{K^0} = B_0(m_u - m_d) + \mathcal{O}(m_q^2)$$

Define em contributions to masses

$$M_P^{\gamma} \equiv M_P - \hat{M}_P, \ \Delta_P^{\gamma} \equiv M_P^2 - \hat{M}_P^2$$

Dashen's theorem: $\Delta_{K^+}^{\gamma} = \Delta_{\pi^+}^{\gamma}$ and its violation

$$[\Delta_\pi\equiv M_{\pi^+}^2-M_{\pi^0}^2]$$

$$\Delta_{K^+}^{\gamma} - \Delta_{K^0}^{\gamma} - \Delta_{\pi^+}^{\gamma} + \Delta_{\pi^0}^{\gamma} = \epsilon \Delta_{\pi}$$

Estimates of the size of Dashen's theorem violation

 χ PT + model-based calculations:

- $\epsilon = \begin{cases} 0.8 \text{ Bijnens-Prades (97)} & Q = 22 \text{ (ENJL model)} \\ 1.0 \text{ Donoghue-Perez (97)} & Q = 21.5 \text{ (VMD)} \\ 1.5 \text{ Anant-Moussallam (04)} & Q = 20.7 \text{(Sum rules)} \end{cases}$

Lattice-based calculations

(the value of Q is calculated in γ PT at NLO)

(0.50(8)	Duncan et al. (96)	Q = 22.9
İ	0.5(1)	RBC (07)	Q = 22.9
ľ	0.78(6)(2)(9)(2)	BMW (11)	<i>Q</i> = 22.1
$\epsilon = \langle$	0.78(6)(2)(9)(2) 0.65(7)(14)(10) 0.79(18)(18)	MILC (13)	<i>Q</i> = 22.6
1	0.79(18)(18)	RM123 (13)	<i>Q</i> = 22.1
ļ	0.73(2)(5)(17) 0.73(3)(13)(5)	BMW (16)	<i>Q</i> = 22.2
l	0.73(3)(13)(5)	MILC (16)	<i>Q</i> = 22.2

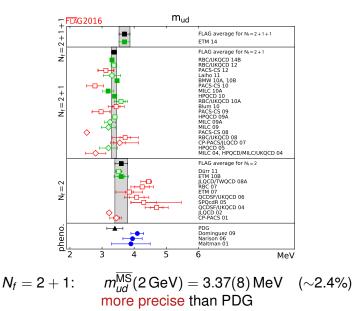
Value quoted in FLAG-3: $\epsilon = 0.7(3)$

FLAG-3 summary of the quark masses

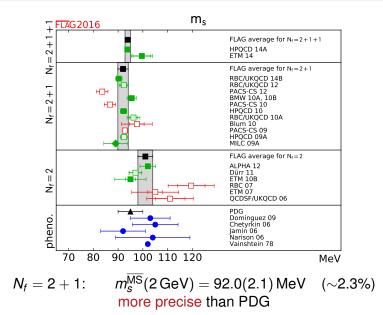
m _{ud}	ms	all masses in MeV m_s/m_{ud}
3.70(17)	93.9(1.1)	27.30(34)
3.373(80)	92.0(2.1)	27.43(31)
3.6(2)	101(3)	27.3(9)
-	3.70(17) 3.373(80)	3.70(17) 93.9(1.1) 3.373(80) 92.0(2.1)

N _F	mu	m _d	m_u/m_d	R	Q
2+1+1	2.36(24)	5.03(26)	0.470(56)	35.6(5.1)	22.2 (1.6)
2+1	2.16(9)(7)	4.68(14)(7)	0.46(2)(2)	35.0(1.9)(1.8)	22.5(6)(6)
2	2.40(23)	4.80(23)	0.50(4)	40.7(3.7)(2.2)	24.3(1.4)(0.6)

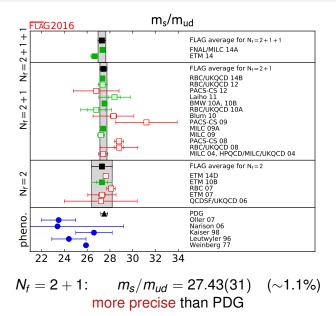
Light quark masses



Light quark masses



Light quark masses



Outline

Introduction QCD Chiral perturbation theory

How to determine $m_u - m_d$

 $\eta
ightarrow$ 3 π and QThe $\eta
ightarrow$ 3 π amplitude

Summary

The decay $\eta \rightarrow 3\pi$ is purely isospin violating:

in an isospin symmetric world it cannot happen

and its mostly due to strong isospin breaking (electromagnetic contributions are suppressed)

Sutherland 66

Lowest order chiral amplitude:

Sutherland (66), Osborn, Wallace (70)

$$\mathcal{M}(\eta \to \pi^+ \pi^- \pi^0) =: \mathcal{A}(s, t, u) \qquad s = (p_{\pi^+} + p_{\pi^-})^2, \dots$$

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2} + O(p^2) \right] + \frac{O(e^2m)}{1 + O(e^2m)}$$

Relate $m_u - m_d$ to meson masses

Dashen (69)

$$B_0(m_u - m_d) = (\hat{M}_{K^+}^2 - \hat{M}_{K^0}^2) + \mathcal{O}(m^2)$$

LO chiral prediction

 $\Gamma(\eta \to \pi^+ \pi^- \pi^0) \sim 70 \text{ eV} \qquad \qquad \ll \quad \Gamma_{\exp} = 299 \pm 11 \text{ eV}$

Lowest order chiral amplitude:

Sutherland (66), Osborn, Wallace (70)

$$\mathcal{M}(\eta \to \pi^+ \pi^- \pi^0) =: A(s, t, u) \qquad s = (p_{\pi^+} + p_{\pi^-})^2, \dots$$

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_{\pi}^2} \left[1 + \frac{3(s - s_0)}{M_{\eta}^2 - M_{\pi}^2} + O(p^2) \right] + \frac{O(e^2m)}{1 + O(e^2m)}$$

Relate $m_u - m_d$ to meson masses

Dashen (69)

$$B_0(m_u - m_d) = (\hat{M}_{K^+}^2 - \hat{M}_{K^0}^2) + \mathcal{O}(m^2)$$

NLO chiral prediction

Gasser-Leutwyler (85)

$$\Gamma(\eta \to \pi^+ \pi^- \pi^0) \sim 70 \text{ eV} \to 160 \pm 50 \text{ eV} \quad \ll \quad \Gamma_{exp} = 299 \pm 11 \text{ eV}$$

Lowest order chiral amplitude:

Sutherland (66), Osborn, Wallace (70)

$$\mathcal{M}(\eta \to \pi^+ \pi^- \pi^0) =: \mathcal{A}(s, t, u) \qquad s = (p_{\pi^+} + p_{\pi^-})^2, \dots$$

$$A(s,t,u) = \frac{B_0(m_u - m_d)}{3\sqrt{3}F_\pi^2} \left[1 + \frac{3(s-s_0)}{M_\eta^2 - M_\pi^2} + O(p^2) \right] + O(e^2m)$$

Relate $m_u - m_d$ to meson masses

Dashen (69)

$$B_0(m_u - m_d) = (\hat{M}_{K^+}^2 - \hat{M}_{K^0}^2) + \mathcal{O}(m^2)$$

NLO chiral prediction

Gasser-Leutwyler (85)

$$\Gamma(\eta \to \pi^+ \pi^- \pi^0) \sim 70 \text{ eV} \to 160 \pm 50 \text{ eV} \quad \ll \quad \Gamma_{exp} = 299 \pm 11 \text{ eV}$$

Large rescattering effects or violations to Dashen's theorem?

Amplitudes $\eta \rightarrow 3\pi$ beyond χPT

Decay amplitudes

$$\begin{array}{lcl} {\cal A}(\eta \rightarrow \pi^+\pi^-\pi^0) & \equiv & {\cal A}_{\cal C}(s,t,u) \\ {\cal A}(\eta \rightarrow 3\pi^0) & \equiv & {\cal A}_{\it n}(s,t,u) \end{array}$$

Both vanish in the isospin limit and do not receive $\mathcal{O}(\alpha_{\rm em})$ contributions Sutherland (66)

$$\begin{aligned} A_{c}(s,t,u) &= -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) \left[M(s,t,u) + \mathcal{O}(\delta) \right] \\ A_{n}(s,t,u) &= -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) \left[M(s,t,u) + M(t,u,s) + M(u,s,t) + \mathcal{O}(\delta) \right] \\ N &:= (3\sqrt{3}F_{\pi}^{2})^{-1} \qquad \delta \sim (m_{u} - m_{d}, \alpha_{em}) \end{aligned}$$

Amplitudes $\eta \rightarrow 3\pi$ beyond χPT

Decay amplitudes

$$\begin{array}{lll} {\it A}(\eta \rightarrow \pi^+\pi^-\pi^0) & \equiv & {\it A}_c(s,t,u) \\ {\it A}(\eta \rightarrow 3\pi^0) & \equiv & {\it A}_n(s,t,u) \end{array}$$

Both vanish in the isospin limit and do not receive $\mathcal{O}(\alpha_{\rm em})$ contributions Sutherland (66)

$$A_{c}(s, t, u) = -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) [M(s, t, u) + \mathcal{O}(\delta)]$$

$$A_{n}(s, t, u) = -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) [M(s, t, u) + M(t, u, s) + M(u, s, t) + \mathcal{O}(\delta)]$$

$$N := (3\sqrt{3}F_{\pi}^2)^{-1} \qquad \delta \sim (m_u - m_d, \alpha_{\rm em})$$

- Leading contribution M(s, t, u) isospin-symmetric: one amplitude describes both decay channels
- $\mathcal{O}(\delta)$ -piece different for the two channels

Amplitudes $\eta \rightarrow 3\pi$ beyond χPT

Decay amplitudes

$$\begin{array}{lll} {\it A}(\eta \rightarrow \pi^+\pi^-\pi^0) & \equiv & {\it A}_c(s,t,u) \\ {\it A}(\eta \rightarrow 3\pi^0) & \equiv & {\it A}_n(s,t,u) \end{array}$$

Both vanish in the isospin limit and do not receive $\mathcal{O}(\alpha_{\rm em})$ contributions Sutherland (66)

$$A_{c}(s, t, u) = -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) [M(s, t, u) + \mathcal{O}(\delta)]$$

$$A_{n}(s, t, u) = -N(\hat{M}_{K^{0}}^{2} - \hat{M}_{K^{+}}^{2}) [M(s, t, u) + M(t, u, s) + M(u, s, t) + \mathcal{O}(\delta)]$$

$$N := (3\sqrt{3}F_{\pi}^2)^{-1} \qquad \delta \sim (m_u - m_d, \alpha_{\rm em})$$

- Leading contribution M(s, t, u) isospin-symmetric: amenable to a dispersive treatment
- $\mathcal{O}(\delta)$ -piece modifies the phase space and the vars. *s*, *t*, *u*

Q from the decay $\eta \rightarrow 3\pi$

Steps leading to a determination of ${\it Q}$ from $\eta \to 3\pi$

- 1. estimate the corrections $\mathcal{O}(\delta)$
- 2. evaluate the isospin-symmetric amplitude M(s, t, u)

 $(\chi PT \text{ or } DR)$

 (χPT)

- 3. compare the evaluated total width (including $\mathcal{O}(\delta)$ corr.) with the measured one and determine: $-(\hat{M}_{K^0}^2 \hat{M}_{K^+}^2)$
- 4. invoke the low-energy theorem

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = rac{M_K^2 (M_K^2 - M_\pi^2)}{Q^2 M_\pi^2}$$

to obtain a value for Q

${\it Q}$ from the decay $\eta ightarrow 3\pi$

Steps leading to a determination of ${\it Q}$ from $\eta \to 3\pi$

- 1. estimate the corrections $\mathcal{O}(\delta)$
- 2. evaluate the isospin-symmetric amplitude M(s, t, u)

 $(\chi PT \text{ or } DR)$

 (χPT)

- 3. compare the evaluated total width (including $\mathcal{O}(\delta)$ corr.) with the measured one and determine: $-(\hat{M}_{K^0}^2 \hat{M}_{K^+}^2)$
- 4. invoke the low-energy theorem

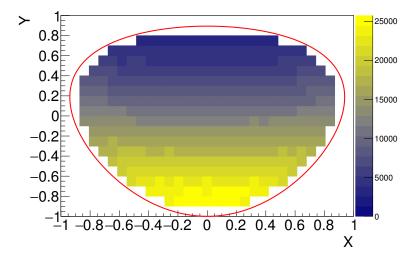
$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = rac{M_K^2 (M_K^2 - M_\pi^2)}{Q^2 M_\pi^2}$$

to obtain a value for Q

Data on the Dalitz plot $M(s, t, u)/M(s_0, s_0, s_0)$ put constraints on the dynamical calculation for M(s, t, u)but the essential, purely theory input is: $M(s_0, s_0, s_0)$

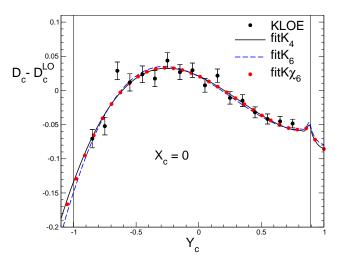
 $\eta
ightarrow 3\pi$

KLOE data



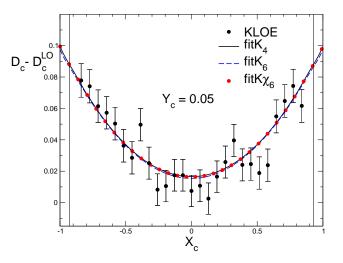
371 bins = data points KLOE collab. JHEP 2016

Momentum dependence



GC, Lanz, Leutwyler, Passemar in prep.

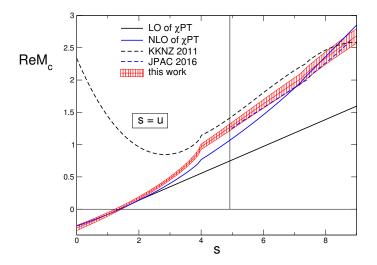
Momentum dependence



GC, Lanz, Leutwyler, Passemar in prep.

$\eta ightarrow 3\pi$

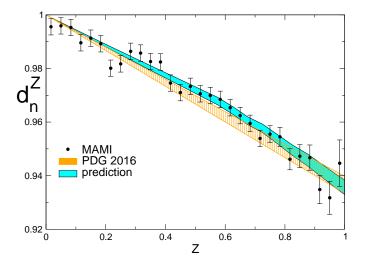
Momentum dependence



GC, Lanz, Leutwyler, Passemar in prep.

Dalitz plot in the neutral channel

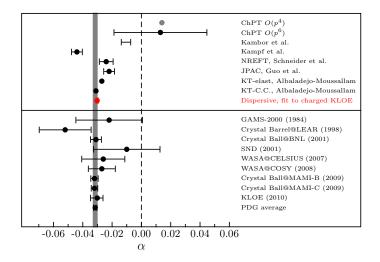
Fit to the charged channel \Rightarrow prediction for the neutral channel which agrees perfectly with MAMI data GC, Lanz, Leutwyler, Passemar in prep.



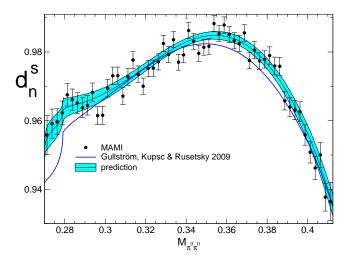
Dalitz plot in the neutral channel: value of α

 $\alpha \equiv \text{slope at } z = 0$

Comparison with other determinations:



Dalitz plot in the neutral channel



GC, Lanz, Leutwyler, Passemar, in prep.

Ratio of decay rates

The ratio of decay rates for the two channels can also be calculated and with remarkable accuracy Gasser-Leutwyler (85)

The normalization H_0 also drops out in this ratio

As it turns out most uncertainties cancel out, giving:

$$B\equiv rac{\Gamma(\eta
ightarrow 3\pi^0)}{\Gamma(\eta
ightarrow \pi^+\pi^-\pi^0)}=1.44(4)$$

which agrees perfectly with the measured value

 $B_{\rm PDG}({\rm our\ fit}) = 1.426(26), \qquad B_{\rm PDG}({\rm our\ average}) = 1.48(5)$

Determination of Q

GC, Lanz, Leutwyler, Passemar (16)

 $H_0^{
m NLO} = 1.176(53)$ and $\Gamma(\eta \to \pi^+ \pi^- \pi^0) = (299 \pm 11) \text{ eV yield:}$

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = 6.27(38)10^{-3}\,{
m GeV}^2$$

which implies:

$$(\textit{M}_{\textit{K}^0}^2-\textit{M}_{\textit{K}^+}^2)_{\text{QED}}=-2.38(38)10^{-3}\,\text{GeV}^2$$

This corresponds to

$$\epsilon = 0.9(3)$$

in agreement with recent lattice determinations:

$$\epsilon = \begin{cases} 0.74(18) & \text{BMW} \\ 0.73(14) & \text{MILC} \\ 0.50(6) & \text{QCDSF/UKQCD} \\ 0.801(110) & \text{RM123} \end{cases}$$

.

Determination of Q

GC, Lanz, Leutwyler, Passemar (16)

 $H_0^{
m NLO} = 1.176(53)$ and $\Gamma(\eta \to \pi^+ \pi^- \pi^0) = (299 \pm 11) \text{ eV yield:}$

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = 6.27(38)10^{-3}\,{
m GeV}^2$$

which implies: (upon use of)

$$(\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2) = rac{M_K^2 (M_K^2 - M_\pi^2)}{Q^2 M_\pi^2} \left(1 + \mathcal{O}(m^2)\right)$$

$$Q = \begin{cases} 21.99(70) & \eta \to \pi^+ \pi^- \pi^0 \\ 22.04(70) & \eta \to 3\pi^0 \end{cases} \Rightarrow \qquad Q = 22.0(7)$$

somewhat lower than recent lattice direct determinations

$$Q = \begin{cases} 23.40(64) & \text{BMW} \\ 23.8(1.1) & \text{RM123} \end{cases}$$

Unexpectedly large $\mathcal{O}(m^2)$ effects?

Single vs Double Quark Mass Ratios

Isospin-limit ratio S:

$$S \equiv rac{m_{S}}{m_{ud}} = 27.43(31)$$
 FLAG (17) $rac{ar{M}_{K}^{2}}{ar{M}_{\pi}^{2}} = (S+1)(1+\Delta_{S}) \qquad \Delta_{S} = -0.055$

Isospin-breaking ratio R:

$$R \equiv rac{m_s - m_{ud}}{m_d - m_u} \qquad rac{ar{M}_K^2 - ar{M}_\pi^2}{\hat{M}_{K^0}^2 - \hat{M}_{K^+}^2} = R(1 + \Delta R)$$

Relation among *R*, *S* and *Q*: $\Delta_S, \Delta_R \sim \mathcal{O}(m), \ \Delta_Q \sim \mathcal{O}(m^2)$

$$Q^2 = rac{1}{2}R(S+1) \qquad \Rightarrow \qquad (1+\Delta_Q) = (1+\Delta_S)(1+\Delta_R)$$

Single vs Double Quark Mass Ratios

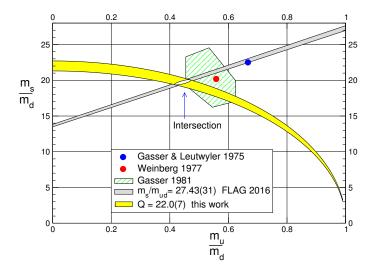
Relation among *R*, *S* and *Q*: $\Delta_S, \Delta_R \sim \mathcal{O}(m), \ \Delta_Q \sim \mathcal{O}(m^2)$

$$Q^2 = rac{1}{2}R(S+1) \qquad \Rightarrow \qquad (1+\Delta_Q) = (1+\Delta_S)(1+\Delta_R)$$

	Q	Δ_S	Δ_R	Δ_Q
BMW	23.4(0.4)(0.3)(0.4)	-0.063	-0.028	-0.089
RM123	23.8(1.1)	-0.042	-0.060	-0.099
this work*	22.0(7)	-0.055(11)	0.061(13)	0

* GC, Lanz, Leutwyler, Passemar, in prep.

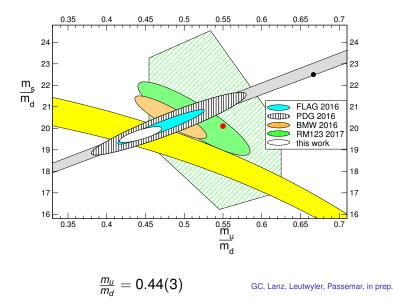
Quark mass ratios: results



$$\frac{n_u}{n_d} = 0.44(3)$$

GC, Lanz, Leutwyler, Passemar, in prep.

Quark mass ratios: results



Outline

Introduction QCD Chiral perturbation theory

How to determine $m_u - m_d$

 $\eta
ightarrow 3\pi$ and QThe $\eta
ightarrow 3\pi$ amplitude

Summary

Summary

- Quark masses are fundamental and yet unexplained parameters of the standard model
- I have discussed methods to determine the values of the light quark masses
- ► I have reviewed determinations of m_d m_u based on lattice and χPT + model estimates
- ► I have discussed the extraction of the quark mass ratio *Q* from $\eta \rightarrow 3\pi$ decays based on dispersion relations

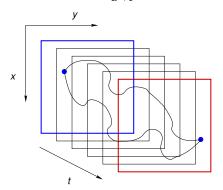
work in collab. with S. Lanz, H. Leutwyler and E. Passemar (16) and in progress

 lattice calculations of Q somewhat higher and show a weird pattern in the chiral series of quark mass ratios: lattice calculations in pure QCD could resolve this puzzle

Backup Slides

The spectrum in lattice QCD

$$C(t) = \int d^3x \, \langle [\bar{q}\gamma_5 q(x)] \, [\bar{q}\gamma_5 q(0)] \rangle \, e^{i\mathbf{p}\mathbf{x}} \stackrel{t \to \infty}{\longrightarrow} \sum_{n=0}^{\infty} c_n \, e^{-E_n t}$$
$$M_{\pi} = \lim_{\substack{L \to \infty \\ a \to 0}} M_{\pi}(L, a) \qquad M_{\pi}(L, a) = E_n(\mathbf{p} = 0)$$



• $\overline{q} \gamma_5 q$, $\overline{q} \Gamma q$

fermion propagator

Dispersive approach

Isospin decomp. of M(s, t, u)

GC, Lanz, Leutwyler, Passemar, (16)

Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

assumes only: $\operatorname{disc}[t'_{\ell}(s)] = 0$ $\forall \ell \geq 2$ in all channels

Analytic properties of the $M_l(s)$ functions: $[s > 4M_{\pi}^2]$

$$\operatorname{disc}[M_l(s)] = \operatorname{disc}[t_\ell^l(s)] = t_\ell^l(s) e^{i \delta_\ell^l(s)} \sin \delta_\ell^l(s)$$

 $t_{\ell}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s) = \text{part. wave, } I = \text{isospin, } \ell = \text{ang. momentum}$

Dispersion relation for M_0 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

$$M_{0}(s) = \Omega_{0}(s) \left\{ \alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} + \delta_{0}s^{3} + \frac{s^{2}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{0}(s')\sin\delta_{0}^{0}(s')}{|\Omega_{0}(s')|s'^{2}(s'-s-i\epsilon)} \right\}$$

Dispersive approach

Isospin decomp. of M(s, t, u)

GC, Lanz, Leutwyler, Passemar, (16)

Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

assumes only: $\operatorname{disc}[t'_{\ell}(s)] = 0$ $\forall \ell \geq 2$ in all channels

Analytic properties of the $M_l(s)$ functions: $[s > 4M_{\pi}^2]$

$$ext{disc}[M_l(s)] = ext{disc}[t_\ell^l(s)] = t_\ell^l(s) e^{i \delta_\ell^l(s)} \sin \delta_\ell^l(s)$$

 $t_{\ell}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s) = \text{part. wave, } I = \text{isospin, } \ell = \text{ang. momentum}$

Dispersion relation for M_1 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

$$M_1(s) = \Omega_1(s) \left\{ \beta_1 s + \gamma_1 s^2 + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\sin \delta_1^1(s') \hat{M}_1(s')}{|\Omega_1(s')| s'(s'-s-i\epsilon)} \right\}$$

Dispersive approach

Isospin decomp. of M(s, t, u)

GC, Lanz, Leutwyler, Passemar, (16)

Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

assumes only: $\operatorname{disc}[t'_{\ell}(s)] = 0$ $\forall \ell \geq 2$ in all channels

Analytic properties of the $M_l(s)$ functions: $[s > 4M_{\pi}^2]$

$$ext{disc}[M_l(s)] = ext{disc}[t_\ell^l(s)] = t_\ell^l(s) e^{i \delta_\ell^l(s)} \sin \delta_\ell^l(s)$$

 $t_{\ell}^{I}(s) = M_{I}(s) + \hat{M}_{I}(s) =$ part. wave, I = isospin, $\ell =$ ang. momentum

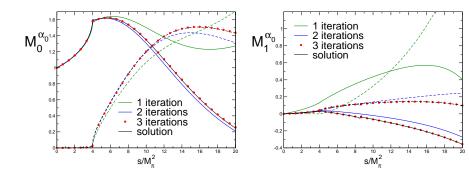
Dispersion relation for M₂ Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

$$M_{2}(s) = \Omega_{2}(s) \frac{s^{2}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\sin \delta_{0}^{2}(s') \hat{M}_{2}(s')}{|\Omega_{2}(s')| s'^{2}(s'-s-i\epsilon)}$$

Solution of the dispersion relations GC, Lanz, Leutwyler, Passemar, (16)

Solutions of the dispersion relations are linear in the subtraction constants $\alpha_0, \beta_0, \ldots, \gamma_1$:

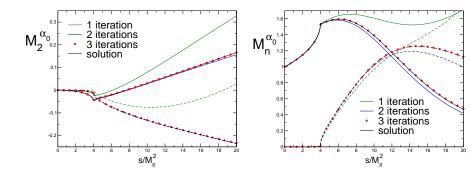
$$M_{l}(s) = \alpha_{0}M_{l}^{\alpha_{0}}(s) + \beta_{0}M_{l}^{\beta_{0}}(s) + \cdots + \gamma_{1}M_{l}^{\gamma_{1}}(s)$$



Solution of the dispersion relations GC, Lanz, Leutwyler, Passemar, (16)

Solutions of the dispersion relations are linear in the subtraction constants $\alpha_0, \beta_0, \ldots, \gamma_1$:

$$M_{l}(s) = \alpha_{0}M_{l}^{\alpha_{0}}(s) + \beta_{0}M_{l}^{\beta_{0}}(s) + \cdots + \gamma_{1}M_{l}^{\gamma_{1}}(s)$$



Isospin breaking

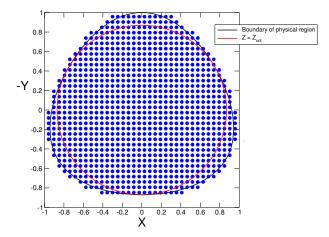
Dispersive calculation performed in the isospin limit:

$$M_{\pi}=M_{\pi^+}$$
 $e=0$

- ▶ we correct for $M_{\pi^0} \neq M_{\pi^+}$ by "stretching" $s, t, u \Rightarrow$ boundaries of isospin-symmetric phase space = boundaries of physical phase space
- analysis of Ditsche, Kubis, Meissner (09) used as guidance and check. Same for Gullström, Kupsc and Rusetsky (09)
- e ≠ 0 effects partly corrected for in the data analysis for the rest we rely on one-loop ChPT – formulae given by Ditsche, Kubis, Meissner (09)

Isospin breaking I: boundary preserving map

Phase space boundary in the limit $M_{\pi^0} = M_{\pi^+}$: $z = z_{crit}$



Isospin breaking I: boundary preserving map

Mandelstam variables in the isospin limit ($M_{\pi^i} = M_{\pi} \equiv isoB$) used in our dispersive treatment: *s*, *t*, *u*

$$s+t+u=M_{\eta}^2+3M_{\pi}^2$$

Mandelstam variables in the physical channels:

$$s_c + t_c + u_c = M_\eta + 2M_\pi^2 + M_{\pi^0}^2$$
 $s_n + t_n + u_n = M_\eta + 3M_{\pi^0}^2$

Define a mapping $(X_i, Y_i) \rightarrow (X_i^{\text{bpm}}, Y_i^{\text{bpm}})$, for i = c, n such that boundary/center of phys. reg. \rightarrow boundary/center of isoB phase sp.

$$M^{\text{bpm}}(X_c, Y_c) \equiv M^{\text{disp}}(X_c^{\text{bpm}}(X_c, Y_c), Y_c^{\text{bpm}}(Y_c))$$

is used to fit the data in the charged channel

Isospin breaking II: em corrections

1

We rely on the one-loop ChPT calculation of Ditsche, Kubis, Meissner (09) in the following way:

- we remove the corrections due to real photons and to the Coulomb pole
- we calculate the ratios $N_{n,c}$ and $p_{n,c}(X_{n,c}, Y_{n,c})$

$$N_n \equiv \frac{|M_n^{\text{DKM}}(0,0)|^2}{|M_n^{\text{DKM},\text{bpm}}(0,0)|^2} , N_c \equiv \frac{|M_c^{\text{DKM}}(0,0)|^2}{|M_c^{\text{DKM},\text{bpm}}(0,0)|^2}$$
$$p_n(X_n, Y_n) \equiv \frac{1}{N_n} \frac{|M_n^{\text{DKM}}(X_n, Y_n)|^2}{|M_n^{\text{DKM},\text{bpm}}(X_n, Y_n)|^2}$$
$$p_c(X_c, Y_c) \equiv \frac{1}{N_c} \frac{|M_c^{\text{DKM}}(X_c, Y_c)|^2}{|M_c^{\text{mDKM},\text{bpm}}(X_c, Y_c)|^2}$$

Isospin breaking II: em corrections

We rely on the one-loop ChPT calculation of Ditsche, Kubis, Meissner (09) in the following way:

- we remove the corrections due to real photons and to the Coulomb pole
- we calculate the ratios $N_{n,c}$ and $p_{n,c}(X_{n,c}, Y_{n,c})$
- we fit the data with

$$|M_n(X_n, Y_n)|^2 = |M^{\text{bpm}}(X_n, Y_n)|^2 N_n p_n(X_n, Y_n)$$

$$|M_c(X_c, Y_c)|^2 = |M^{\text{bpm}}(X_c, Y_c)|^2 N_c \rho_c(X_c, Y_c)$$

How we fit the data

GC, Lanz, Leutwyler, Passemar (16)

- our dispersive amplitude, (corrected for isospin breaking) and linear in the subtraction constants
- four up to six subtraction constants: α_0 , β_0 , γ_0 , δ_0 , β_1 , γ_1
- b the normalization of the Dalitz plot is arbitrary, so α₀ (→ H₀) is not fitted
- available data are from:
 - KLOE (2016)
 - WASA@COSY (2014)
 - Crystal Ball@MAMI (2007)
 - several values for α are in the PDG

How we fit the data

GC, Lanz, Leutwyler, Passemar (16)

- our dispersive amplitude, (corrected for isospin breaking) and linear in the subtraction constants
- four up to six subtraction constants: α_0 , β_0 , γ_0 , δ_0 , β_1 , γ_1
- b the normalization of the Dalitz plot is arbitrary, so α₀ (→ H₀) is not fitted
- available data are from:
 - ► KLOE (2016) ⇐
 - WASA@COSY (2014)
 - Crystal Ball@MAMI (2007)
 - several values for α are in the PDG

Fit results

GC, Lanz, Leutwyler, Passemar in prep.

	β_0	γ_0	δ_0	β_1	γ_1	$\chi^2_{\rm KLOE}$	$\chi^2_{ m th}$
fit χ_4	16.9	-29.4	-	6.6	-	940	0
fitK4	17.3(7)	-34.8(7.1)	_	6.4(8)	-	385	0.61
fitK χ_4	17.2(6)	-34.7(7.1)	_	6.4(7)	-	385	0.60
fitK5	13.6(2.0)	13.5(24.5)	-120(59.5)	12.6(3.3)	-	376	29
fitK χ_5	16.3(8)	-21.2(9.5)	-34.7(18.5)	8.1(1.1)	-	380	0.99
fitK ₆	-17.9(10.3)	-38.8(76.8)	-61.9(77.6)	72.6(19.2)	-290(89)	369	898
fitK χ_6	16.2(1.2)	-21.3(10.3)	-34.5(18.6)	8.2(2.2)	-1(10.8)	380.0	1.02

fitK(χ)_n=fit to KLOE with *n* subtr. const.; χ = with chiral constraints