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Maxwell’s theory of electromagnetism
Lagrangian leading to Maxwell equations

LMaxwell = −1
4

FµνFµν − Aµjµ

where

Fµν = ∂µAν − ∂νAµ Aµ = (φ, ~A), jµ = (ρ, ~A)
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Lagrangian leading to Maxwell equations

LMaxwell = −1
4

FµνFµν − Aµjµ

where

Fµν = ∂µAν − ∂νAµ Aµ = (φ, ~A), jµ = (ρ, ~A)

At the microscopic level, the current is made out of fermions,
described by Dirac’s theory:

LQED = −1
4

FµνFµν − Aµ

[∑
i

ei ψ̄iγµψi

]
+
∑

i

ψ̄i [i∂µγµ −mi ]ψi
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4

FµνFµν − Aµjµ

where

Fµν = ∂µAν − ∂νAµ Aµ = (φ, ~A), jµ = (ρ, ~A)

At the microscopic level, the current is made out of fermions,
described by Dirac’s theory:

LQED = −1
4

FµνFµν +
∑

i

ψ̄i [i(∂µ + ieiAµ)γµ −mi ]ψi
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Maxwell’s theory of electromagnetism
Lagrangian leading to Maxwell equations

LMaxwell = −1
4

FµνFµν − Aµjµ

where

Fµν = ∂µAν − ∂νAµ Aµ = (φ, ~A), jµ = (ρ, ~A)

At the microscopic level, the current is made out of fermions,
described by Dirac’s theory:

LQED = −1
4

FµνFµν +
∑

i

ψ̄i [iDµγ
µ −mi ]ψi

QED is a gauge theory=theory defined by local invariance
Dµ = ∂µ + ieAµ the relevant covariant derivative
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Lagrangian leading to Maxwell equations

LMaxwell = −1
4

FµνFµν − Aµjµ

where

Fµν = ∂µAν − ∂νAµ Aµ = (φ, ~A), jµ = (ρ, ~A)

At the microscopic level, the current is made out of fermions,
described by Dirac’s theory:

LQED = −1
4

FµνFµν +
∑

i

ψ̄i [iD/−mi ]ψi

QED is a gauge theory=theory defined by local invariance
Dµ = ∂µ + ieAµ the relevant covariant derivative



Intro mu − md η → 3π and Q Summary QCD χPT

Theory of strong interactions: QCD
Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

QED : U(1) −→ QCD : SU(3)

and the covariant derivative changes accordingly

Dµ = ∂µ + ieAµ −→ Dµ = ∂µ + igAa
µλa (a = 1, . . .8)
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Theory of strong interactions: QCD
Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:

QED : U(1) −→ QCD : SU(3)

and the covariant derivative changes accordingly

Dµ = ∂µ + ieAµ −→ Dµ = ∂µ + igAµ

LQCD = −1
4

Tr [GµνGµν ] +
∑

i

q̄i(iD/−mqi )qi

The behaviour of QED and QCD is very different
Determining the fermion masses mi in the two theories is a
completely different matter
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The QCD spectrum
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Quark masses

QCD Lagrangian:

LQCD = −1
4

TrGµνGµν +
∑

i

q̄i(iD/−mqi )qi +
∑

j

Q̄j(iD/−mQj )Qj

I In the limit mqi → 0 and mQj →∞: Mhadrons ∝ Λ

I Observe that mqi � Λ while mQj � Λ [Λ ∼ MN ]

I Quarks do not propagate:
quark masses are coupling constants! (not observables)

they depend on the renormalization scale µ (like αs )
for light quarks by convention: µ = 2 GeV
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The QCD spectrum

I the lowest-lying particles in the spectra are well
understood: they would become exactly massless in the
chiral limit of QCD (Goldstone bosons)

I the dynamics of strong interactions at low energy can be
understood on the basis of chiral symmetry
(chiral perturbation theory = χPT)

I the positions of the low-lying resonances is more difficult to
determine and understand

I they set the limit of validity of the chiral expansion
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Systems with spontaneous symmetry breaking

I If a symmetry is spontaneously broken the spectrum
contains massless particles – the Goldstone bosons

I symmetry constrains the interactions of the Goldstone
bosons – their interactions vanish at low energy

I Green (correlation) functions contain poles and cuts due to
the exchange of Goldstone bosons

I the vertices, on the other hand, can be expanded in
powers of momenta and obey symmetry relations

I effective Lagrangian: systematic method to construct this
expansion, respecting symmetry and all the general
principles of quantum field theory Weinberg (79)

I The method leads to predictions – even very sharp ones
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Quantum Chromodynamics in the chiral limit

L(0)
QCD = −1

4
TrGµνGµν + q̄Li /DqL + q̄R i /DqR q =

 u
d
s


Large global symmetry group:

SU(3)L × SU(3)R × U(1)V × U(1)A

1. U(1)V ⇒ baryonic number
2. U(1)A is anomalous
3.

SU(3)L × SU(3)R ⇒ SU(3)V

⇒ Goldstone bosons with the quantum numbers of
pseudoscalar mesons will be generated
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L(0)
QCD + Lm, Lm := −q̄Mq

M =

 mu
md

ms


the mass term Lm can be considered as a small perturbation⇒
Expand around L(0)

QCD ≡ Expand in powers of mq
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Quark masses, chiral expansion
In the real world quarks are not massless:

LQCD = L(0)
QCD + Lm, Lm := −q̄Mq

M =

 mu
md

ms


the mass term Lm can be considered as a small perturbation⇒
Expand around L(0)

QCD ≡ Expand in powers of mq

Chiral perturbation theory, the low-energy effective theory of
QCD, is a simultaneous expansion in powers of momenta and
quark masses
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Quark mass expansion of meson masses
General quark mass expansion for the P particle:

M2
P = M2

0 + 〈P|q̄Mq|P〉+ O(m2
q)

For the pion M2
0 = 0:

M2
π = −(mu + md )

1
F 2
π

〈0|q̄q|0〉+ O(m2
q)

where we have used a Ward identity:

〈π|q̄q|π〉 = − 1
F 2
π

〈0|q̄q|0〉 =: B0

〈0|q̄q|0〉 is an order parameter for the chiral spontaneous
symmetry breaking Gell-Mann, Oakes and Renner (68)
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Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:

M2
π = (mu + md )B0 + O(m2

q)

M2
K + = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1
3

(mu + md + 4ms)B0 + O(m2
q)
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Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:

M2
π = (mu + md )B0 + O(m2

q)

M2
K + = (mu + ms)B0 + O(m2

q)

M2
K 0 = (md + ms)B0 + O(m2

q)

M2
η =

1
3

(mu + md + 4ms)B0 + O(m2
q)

Consequences: (m̂ = (mu + md )/2)

M2
K/M

2
π = (ms + m̂)/2m̂ ⇒ ms/m̂ = 25.9

M2
η/M

2
π = (2ms + m̂)/3m̂ ⇒ ms/m̂ = 24.3

3M2
η = 4M2

K −M2
π Gell-Mann–Okubo (62)

(0.899 = 0.960) GeV2
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Quark mass expansion of meson masses
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How to determine quark masses

I From their influence on the spectrum χPT, lattice

I mQ � Λ
MQ̄qi

= mQ +O(Λ)

I mq � Λ

Mq̄i qj = M0 ij +O(mqi ,mqj ) M0 ij = O(Λ)

In both cases need to understand the O(Λ) term

I From their influence on any other observable χPT, sum rules

Quark masses are coupling constants
⇒ exploit the sensitivity to them of any observable
[e.g. η decays, spectral functions from τ decays, etc. ]
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Isospin symmetry
Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if mu = md

LQCD = L(0)
QCD − m̂(ūu + d̄d)
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Isospin symmetry
Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if mu = md q =

(
u
d

)
LQCD = L(0)

QCD − m̂q̄q

Broken by:
mu 6= md and Qu 6= Qd

strong and electromagnetic interactions
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md + mu is easier to get than md −mu

md , mu � Λ ⇒ Lm = −muūu −md d̄d = small perturbation

However:

Lm = −md + mu

2
(ūu + d̄d) + (md −mu)

ūu − d̄d
2

= −m̂ q̄q︸︷︷︸
OI=0

+(md −mu) q̄τ3q︸ ︷︷ ︸
OI=1

selection rules make the effect of OI=1 well hidden

⇒ m̂ responsible for the mass of pions
but (md −mu) only contributes at O(p4) (a tiny δMπ0 )

better sensitivity in K masses
but the em interaction competes as a source of isospin breaking
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First estimates

Leading-order masses of π and K :

M2
π = B0(mu + md ) M2

K + = B0(mu + ms) M2
K 0 = B0(md + ms)

Quark mass ratios:

mu

md
'

M2
π+ −M2

K 0 + M2
K +

M2
π+ + M2

K 0 −M2
K +

' 0.67

ms

md
'

M2
K 0 + M2

K + −M2
π+

M2
K 0 −M2

K + + M2
π+

' 20

mud ≡ (mu + md )/2 ' 5.4 MeV SU(6) relation, Leutwyler (74)

From an analysis of the p-n mass difference: Gasser & Leutwyler (75)

mu ' 4 MeV md ' 6 MeV ms ' 135 MeV
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Electromagnetic corrections to the masses

According to Dashen’s theorem Dashen (69)

M2
π0 = B0(mu + md )

M2
π+ = B0(mu + md ) + ∆em

M2
K 0 = B0(md + ms)

M2
K + = B0(mu + ms) + ∆em

Extracting the quark mass ratios gives Weinberg (77)

mu

md
=

M2
K + −M2

K 0 + 2M2
π0 −M2

π+

M2
K 0 −M2

K + + M2
π+

= 0.56

ms

md
=

M2
K 0 + M2

K + −M2
π+

M2
K 0 −M2

K + + M2
π+

= 20.1
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Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)

M2
K

M2
π

=
ms + m̂

2m̂

[
1 + ∆M +O(m2)

]
M2

K 0 −M2
K +

M2
K −M2

π

=
md −mu

ms − m̂

[
1 + ∆M +O(m2)

]
∆M =

8(M2
K −M2

π)

F 2
π

(2L8 − L5) + χ-logs

The same O(m) correction appears in both ratios
⇒ this double ratio is free from O(m) corrections

Q2 ≡ m2
s − m̂2

m2
d −m2

u
=

M2
K

M2
π

M2
K −M2

π

M2
K 0 −M2

K +

[
1 +O(m2)

]
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Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)

M2
K

M2
π

=
ms + m̂

2m̂

[
1 + ∆M +O(m2)

]
M2

K 0 −M2
K +

M2
K −M2

π

=
md −mu

ms − m̂

[
1 + ∆M +O(m2)

]
∆M =

8(M2
K −M2

π)

F 2
π

(2L8 − L5) + χ-logs

The same O(m) correction appears in both ratios
⇒ this double ratio is free from O(m) and em corrections

Q2
D ≡

(M2
K 0 + M2

K + −M2
π+ + M2

π0)(M2
K 0 + M2

K + −M2
π+ −M2

π0)

4M2
π0(M2

K 0 −M2
K + + M2

π+ −M2
π0)

= 24.3
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Violation of Dashen’s theorem
In pure QCD (M̂P ≡ MP |αem=0

)

M̂K + = B0(ms + mu) +O(m2
q)

M̂K 0 = B0(ms + md ) +O(m2
q)

⇒ M̂K + − M̂K 0 = B0(mu −md ) +O(m2
q)

Define em contributions to masses

Mγ
P ≡ MP − M̂P , ∆γ

P ≡ M2
P − M̂2

P

Dashen’s theorem: ∆γ
K + = ∆γ

π+

and its violation [∆π ≡ M2
π+ −M2

π0 ]

∆γ
K + −∆γ

K 0 −∆γ
π+ + ∆γ

π0 = ε∆π
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Estimates of the size of Dashen’s theorem violation

χPT + model-based calculations:

ε =


0.8 Bijnens-Prades (97) Q = 22 (ENJL model)

1.0 Donoghue-Perez (97) Q = 21.5 (VMD)

1.5 Anant-Moussallam (04) Q = 20.7(Sum rules)

Lattice-based calculations (the value of Q is calculated in χPT at NLO)

ε =



0.50(8) Duncan et al. (96) Q = 22.9
0.5(1) RBC (07) Q = 22.9
0.78(6)(2)(9)(2) BMW (11) Q = 22.1
0.65(7)(14)(10) MILC (13) Q = 22.6
0.79(18)(18) RM123 (13) Q = 22.1
0.73(2)(5)(17) BMW (16) Q = 22.2
0.73(3)(13)(5) MILC (16) Q = 22.2

Value quoted in FLAG-3: ε = 0.7(3)
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FLAG-3 summary of the quark masses

all masses in MeV

NF mud ms ms/mud

2+1+1 3.70(17) 93.9(1.1) 27.30(34)

2+1 3.373(80) 92.0(2.1) 27.43(31)

2 3.6(2) 101(3) 27.3(9)

NF mu md mu/md R Q

2+1+1 2.36(24) 5.03(26) 0.470(56) 35.6(5.1) 22.2 (1.6)

2+1 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8) 22.5(6)(6)

2 2.40(23) 4.80(23) 0.50(4) 40.7(3.7)(2.2) 24.3(1.4)(0.6)
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Light quark masses

2 3 4 5 6

=
+

+
=

+
=

p
h
e
n
o
.

MeV

Maltman 01
Narison 06
Dominguez 09
PDG

CP-PACS 01
JLQCD 02
QCDSF/UKQCD 04
SPQcdR 05
QCDSF/UKQCD 06
ETM 07
RBC 07
JLQCD/TWQCD 08A
ETM 10B
Dürr 11

FLAG average for =

MILC 04, HPQCD/MILC/UKQCD 04
HPQCD 05
CP-PACS/JLQCD 07
RBC/UKQCD 08
PACS-CS 08
MILC 09
MILC 09A
HPQCD 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
HPQCD 10
MILC 10A
PACS-CS 10
BMW 10A, 10B
Laiho 11
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B

FLAG average for = +

ETM 14

FLAG average for = + +

Nf = 2 + 1: mMS
ud (2 GeV) = 3.37(8) MeV (∼2.4%)

more precise than PDG
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Light quark masses
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Vainshtein 78
Narison 06
Jamin 06
Chetyrkin 06
Dominguez 09
PDG

QCDSF/UKQCD 06
ETM 07
RBC 07
ETM 10B
Dürr 11
ALPHA 12

FLAG average for =

MILC 09A
HPQCD 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
HPQCD 10
PACS-CS 10
BMW 10A, 10B
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B

FLAG average for = +

ETM 14
HPQCD 14A 

FLAG average for = + +

Nf = 2 + 1: mMS
s (2 GeV) = 92.0(2.1) MeV (∼2.3%)

more precise than PDG
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Light quark masses

22 24 26 28 30 32 34
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Weinberg 77
Leutwyler 96
Kaiser 98
Narison 06
Oller 07
PDG

QCDSF/UKQCD 06
ETM 07
RBC 07
ETM 10B
ETM 14D

FLAG average for =

MILC 04, HPQCD/MILC/UKQCD 04
RBC/UKQCD 08
PACS-CS 08
MILC 09
MILC 09A
PACS-CS 09
Blum 10
RBC/UKQCD 10A
BMW 10A, 10B
Laiho 11
PACS-CS 12
RBC/UKQCD 12
RBC/UKQCD 14B

FLAG average for = +

ETM 14
FNAL/MILC 14A

FLAG average for = + +

/

Nf = 2 + 1: ms/mud = 27.43(31) (∼1.1%)
more precise than PDG
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η → 3π and χPT

The decay η → 3π is purely isospin violating:

in an isospin symmetric world it cannot happen

and its mostly due to strong isospin breaking
(electromagnetic contributions are suppressed) Sutherland 66
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η → 3π and χPT
Lowest order chiral amplitude: Sutherland (66), Osborn, Wallace (70)

M(η → π+π−π0) =: A(s, t ,u) s = (pπ+ + pπ−)2, . . .

A(s, t ,u) =
B0(mu −md )

3
√

3F 2
π

[
1 +

3(s − s0)

M2
η −M2

π

+ O(p2)

]
+ O(e2m)

Relate mu −md to meson masses Dashen (69)

B0(mu −md ) = (M̂2
K + − M̂2

K 0) +O(m2)

N

LO chiral prediction

Gasser-Leutwyler (85)

Γ(η → π+π−π0) ∼ 70 eV

→ 160±50 eV

� Γexp = 299±11 eV

Large rescattering effects or violations to Dashen’s theorem?
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η → 3π and χPT
Lowest order chiral amplitude: Sutherland (66), Osborn, Wallace (70)

M(η → π+π−π0) =: A(s, t ,u) s = (pπ+ + pπ−)2, . . .

A(s, t ,u) =
B0(mu −md )

3
√

3F 2
π

[
1 +

3(s − s0)

M2
η −M2

π

+ O(p2)

]
+ O(e2m)

Relate mu −md to meson masses Dashen (69)

B0(mu −md ) = (M̂2
K + − M̂2

K 0) +O(m2)

NLO chiral prediction Gasser-Leutwyler (85)

Γ(η → π+π−π0) ∼ 70 eV→ 160±50 eV � Γexp = 299±11 eV

Large rescattering effects or violations to Dashen’s theorem?
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Amplitudes η → 3π beyond χPT
Decay amplitudes

A(η → π+π−π0) ≡ Ac(s, t ,u)

A(η → 3π0) ≡ An(s, t ,u)

Both vanish in the isospin limit and do not receive O(αem)
contributions Sutherland (66)

Ac(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u) +O(δ)]

An(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u)+M(t ,u, s)+M(u, s, t)+O(δ)]

N := (3
√

3F 2
π )−1 δ ∼ (mu −md , αem)
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Amplitudes η → 3π beyond χPT
Decay amplitudes

A(η → π+π−π0) ≡ Ac(s, t ,u)

A(η → 3π0) ≡ An(s, t ,u)

Both vanish in the isospin limit and do not receive O(αem)
contributions Sutherland (66)

Ac(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u) +O(δ)]

An(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u)+M(t ,u, s)+M(u, s, t)+O(δ)]

N := (3
√

3F 2
π )−1 δ ∼ (mu −md , αem)

I Leading contribution M(s, t ,u) isospin-symmetric:
one amplitude describes both decay channels

I O(δ)-piece different for the two channels
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Amplitudes η → 3π beyond χPT
Decay amplitudes

A(η → π+π−π0) ≡ Ac(s, t ,u)

A(η → 3π0) ≡ An(s, t ,u)

Both vanish in the isospin limit and do not receive O(αem)
contributions Sutherland (66)

Ac(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u) +O(δ)]

An(s, t ,u) = −N(M̂2
K 0−M̂2

K +) [M(s, t ,u)+M(t ,u, s)+M(u, s, t)+O(δ)]

N := (3
√

3F 2
π )−1 δ ∼ (mu −md , αem)

I Leading contribution M(s, t ,u) isospin-symmetric:
amenable to a dispersive treatment

I O(δ)-piece modifies the phase space and the vars. s, t , u
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Q from the decay η → 3π
Steps leading to a determination of Q from η → 3π

1. estimate the corrections O(δ) (χPT)
2. evaluate the isospin-symmetric amplitude M(s, t ,u)

(χPT or DR)
3. compare the evaluated total width (including O(δ) corr.)

with the measured one and determine: −(M̂2
K 0−M̂2

K +)

4. invoke the low-energy theorem

(M̂2
K 0 − M̂2

K +) =
M2

K (M2
K −M2

π)

Q2M2
π

to obtain a value for Q
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Q from the decay η → 3π
Steps leading to a determination of Q from η → 3π

1. estimate the corrections O(δ) (χPT)
2. evaluate the isospin-symmetric amplitude M(s, t ,u)

(χPT or DR)
3. compare the evaluated total width (including O(δ) corr.)

with the measured one and determine: −(M̂2
K 0−M̂2

K +)

4. invoke the low-energy theorem

(M̂2
K 0 − M̂2

K +) =
M2

K (M2
K −M2

π)

Q2M2
π

to obtain a value for Q
Data on the Dalitz plot M(s, t ,u)/M(s0, s0, s0) put constraints
on the dynamical calculation for M(s, t ,u)
but the essential, purely theory input is: M(s0, s0, s0)
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KLOE data

X

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

Y

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

0

5000

10000

15000

20000

25000

371 bins = data points KLOE collab. JHEP 2016
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Momentum dependence

-1 -0.5 0 0.5 1
Yc
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-0.05
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Dc- Dc
LO

KLOE
fitK4
fitK6
fitKχ6

Xc = 0

GC, Lanz, Leutwyler, Passemar in prep.
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Momentum dependence

-1 -0.5 0 0.5 1
Xc
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0.04
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0.08

0.1

Dc- Dc
LO

KLOE
fitK4
fitK6
fitKχ6

Yc = 0.05

GC, Lanz, Leutwyler, Passemar in prep.
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Momentum dependence

0 2 4 6 8

s

0

0.5

1

1.5

2

2.5

3

ReM
c

LO of χPT

NLO of χPT

KKNZ 2011

JPAC 2016

this work

s = u

GC, Lanz, Leutwyler, Passemar in prep.
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Dalitz plot in the neutral channel
Fit to the charged channel⇒ prediction for the neutral channel
which agrees perfectly with MAMI data GC, Lanz, Leutwyler, Passemar in prep.

0 0.2 0.4 0.6 0.8 1
Z

0.92

0.94

0.96

0.98

1

dn
Z

MAMI
PDG 2016
prediction

GC, Lanz, Leutwyler, Passemar, in prep.
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Dalitz plot in the neutral channel: value of α
α ≡ slope at z = 0
Comparison with other determinations:

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
α

ChPT O(p4)

ChPT O(p6)

Kambor et al.

Kampf et al.

NREFT, Schneider et al.

JPAC, Guo et al.

KT-elast, Albaladejo-Moussallam

KT-C.C., Albaladejo-Moussallam

Dispersive, fit to charged KLOE

GAMS-2000 (1984)

Crystal Barrel@LEAR (1998)

Crystal Ball@BNL (2001)

SND (2001)

WASA@CELSIUS (2007)

WASA@COSY (2008)

Crystal Ball@MAMI-B (2009)

Crystal Ball@MAMI-C (2009)

KLOE (2010)

PDG average

GC, Lanz, Leutwyler, Passemar, in prep.
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Dalitz plot in the neutral channel

0.28 0.3 0.32 0.34 0.36 0.38 0.4
Mπ0π0

0.94

0.96

0.98

dn
s

MAMI
Gullström, Kupsc & Rusetsky 2009
prediction

GC, Lanz, Leutwyler, Passemar, in prep.
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Ratio of decay rates

The ratio of decay rates for the two channels can also be
calculated and with remarkable accuracy Gasser-Leutwyler (85)

The normalization H0 also drops out in this ratio

As it turns out most uncertainties cancel out, giving:

B ≡ Γ(η → 3π0)

Γ(η → π+π−π0)
= 1.44(4)

which agrees perfectly with the measured value

BPDG(our fit) = 1.426(26), BPDG(our average) = 1.48(5)
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Determination of Q GC, Lanz, Leutwyler, Passemar (16)

HNLO
0 = 1.176(53) and Γ(η → π+π−π0) = (299± 11) eV yield:

(M̂2
K 0 − M̂2

K +) = 6.27(38)10−3 GeV2

which implies:

(M2
K 0 −M2

K +)QED = −2.38(38)10−3 GeV2

This corresponds to
ε = 0.9(3)

in agreement with recent lattice determinations:

ε =


0.74(18) BMW
0.73(14) MILC
0.50(6) QCDSF/UKQCD
0.801(110) RM123

BMW (16), MILC (16) somewhat lower than recent lattice direct
determinations

Q =

{
23.40(64) BMW
23.8(1.1) RM123

Unexpectedly large O(m2) effects?
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Determination of Q GC, Lanz, Leutwyler, Passemar (16)

HNLO
0 = 1.176(53) and Γ(η → π+π−π0) = (299± 11) eV yield:

(M̂2
K 0 − M̂2

K +) = 6.27(38)10−3 GeV2

which implies: (upon use of)

(M̂2
K 0 − M̂2

K +) =
M2

K (M2
K −M2

π)

Q2M2
π

(
1 +O(m2)

)
Q =

{
21.99(70) η → π+π−π0

22.04(70) η → 3π0 ⇒ Q = 22.0(7)

somewhat lower than recent lattice direct determinations

Q =

{
23.40(64) BMW
23.8(1.1) RM123

Unexpectedly large O(m2) effects?
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Single vs Double Quark Mass Ratios

Isospin-limit ratio S:

S ≡ ms

mud
= 27.43(31) FLAG (17)

M̄2
K

M̄2
π

= (S + 1)(1 + ∆S) ∆S = −0.055

Isospin-breaking ratio R:

R ≡ ms −mud

md −mu

M̄2
K − M̄2

π

M̂2
K 0 − M̂2

K +

= R(1 + ∆R)

Relation among R, S and Q: ∆S,∆R ∼ O(m), ∆Q ∼ O(m2)

Q2 =
1
2

R(S + 1) ⇒ (1 + ∆Q) = (1 + ∆S)(1 + ∆R)
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Single vs Double Quark Mass Ratios

Relation among R, S and Q: ∆S,∆R ∼ O(m), ∆Q ∼ O(m2)

Q2 =
1
2

R(S + 1) ⇒ (1 + ∆Q) = (1 + ∆S)(1 + ∆R)

Q ∆S ∆R ∆Q
BMW 23.4(0.4)(0.3)(0.4) -0.063 -0.028 -0.089
RM123 23.8(1.1) -0.042 -0.060 -0.099
this work∗ 22.0(7) -0.055(11) 0.061(13) 0

∗
GC, Lanz, Leutwyler, Passemar, in prep.
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Quark mass ratios: results
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Quark mass ratios: results
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Summary

I Quark masses are fundamental and yet unexplained
parameters of the standard model

I I have discussed methods to determine the values of the
light quark masses

I I have reviewed determinations of md −mu based on
lattice and χPT + model estimates

I I have discussed the extraction of the quark mass ratio Q
from η → 3π decays based on dispersion relations

work in collab. with S. Lanz, H. Leutwyler and E. Passemar (16) and in progress

I lattice calculations of Q somewhat higher and show a
weird pattern in the chiral series of quark mass ratios:
lattice calculations in pure QCD could resolve this puzzle
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Backup Slides
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The spectrum in lattice QCD

C(t) =

∫
d3x 〈[q̄γ5q(x)] [q̄γ5q(0)]〉 eipx t→∞−→

∞∑
n=0

cn e−Ent

Mπ = lim
L→∞
a→0

Mπ(L,a) Mπ(L,a) = En(p = 0)

γ
5q      q,

_ _
Γq    q

y

x

t

fermion propagator
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Dispersive approach GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t ,u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

M(s, t ,u) = M0(s)+(s−u)M1(t)+(s−t)M1(u)+M2(t)+M2(u)−2
3

M2(s)

assumes only: disc[t I
`(s)] = 0 ∀` ≥ 2 in all channels

Analytic properties of the MI(s) functions: [s > 4M2
π]

disc[MI(s)] = disc[t I
`(s)] = t I

`(s)eiδI
`(s) sin δI

`(s)

t I
`(s) = MI(s) + M̂I(s) = part. wave, I = isospin, ` = ang. momentum

Dispersion relation for M0 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

M0(s) = Ω0(s)

{
α0 + β0s + γ0s2 + δ0s3 +

s2

π

∫ ∞
4M2

π

ds′
M̂0(s′) sin δ0

0(s′)
|Ω0(s′)|s′2(s′ − s − iε)

}
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Dispersive approach GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t ,u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

M(s, t ,u) = M0(s)+(s−u)M1(t)+(s−t)M1(u)+M2(t)+M2(u)−2
3

M2(s)

assumes only: disc[t I
`(s)] = 0 ∀` ≥ 2 in all channels

Analytic properties of the MI(s) functions: [s > 4M2
π]

disc[MI(s)] = disc[t I
`(s)] = t I

`(s)eiδI
`(s) sin δI

`(s)

t I
`(s) = MI(s) + M̂I(s) = part. wave, I = isospin, ` = ang. momentum

Dispersion relation for M1 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

M1(s) = Ω1(s)

{
β1s + γ1s2 +

s
π

∫ ∞
4M2

π

ds′
sin δ1

1(s′)M̂1(s′)
|Ω1(s′)|s′(s′ − s − iε)

}
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Dispersive approach GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t ,u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

M(s, t ,u) = M0(s)+(s−u)M1(t)+(s−t)M1(u)+M2(t)+M2(u)−2
3

M2(s)

assumes only: disc[t I
`(s)] = 0 ∀` ≥ 2 in all channels

Analytic properties of the MI(s) functions: [s > 4M2
π]

disc[MI(s)] = disc[t I
`(s)] = t I

`(s)eiδI
`(s) sin δI

`(s)

t I
`(s) = MI(s) + M̂I(s) = part. wave, I = isospin, ` = ang. momentum

Dispersion relation for M2 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

M2(s) = Ω2(s)
s2

π

∫ ∞
4M2

π

ds′
sin δ2

0(s′)M̂2(s′)
|Ω2(s′)|s′2(s′ − s − iε)
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Solution of the dispersion relations GC, Lanz, Leutwyler, Passemar, (16)

Solutions of the dispersion relations are linear in the subtraction
constants α0, β0, . . ., γ1:

MI(s) = α0Mα0
I (s) + β0Mβ0

I (s) + · · ·+ γ1Mγ1
I (s)
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Solution of the dispersion relations GC, Lanz, Leutwyler, Passemar, (16)

Solutions of the dispersion relations are linear in the subtraction
constants α0, β0, . . ., γ1:

MI(s) = α0Mα0
I (s) + β0Mβ0

I (s) + · · ·+ γ1Mγ1
I (s)
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Isospin breaking

Dispersive calculation performed in the isospin limit:

Mπ = Mπ+ e = 0

I we correct for Mπ0 6= Mπ+ by “stretching” s, t ,u ⇒
boundaries of isospin-symmetric phase space =
boundaries of physical phase space

I analysis of Ditsche, Kubis, Meissner (09) used as guidance
and check. Same for Gullström, Kupsc and Rusetsky (09)

I e 6= 0 effects partly corrected for in the data analysis
for the rest we rely on one-loop ChPT – formulae given by
Ditsche, Kubis, Meissner (09)
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Isospin breaking I: boundary preserving map
Phase space boundary in the limit Mπ0 = Mπ+ : z = zcrit
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Isospin breaking I: boundary preserving map
Mandelstam variables in the isospin limit (Mπi = Mπ ≡ isoB)
used in our dispersive treatment: s, t ,u

s + t + u = M2
η + 3M2

π

Mandelstam variables in the physical channels:

sc + tc + uc = Mη + 2M2
π + M2

π0 sn + tn + un = Mη + 3M2
π0

Define a mapping (Xi ,Yi)→ (X bpm
i ,Y bpm

i ), for i = c,n such that
boundary/center of phys. reg. → boundary/center of isoB phase sp.

Mbpm(Xc ,Yc) ≡ Mdisp(X bpm
c (Xc ,Yc),Y bpm

c (Yc))

is used to fit the data in the charged channel
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

I we remove the corrections due to real photons and to the
Coulomb pole

I we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

Nn ≡
|MDKM

n (0,0)|2

|MDKM,bpm
n (0,0)|2

, Nc ≡
|MDKM

c (0,0)|2

|MDKM,bpm
c (0,0)|2

pn(Xn,Yn) ≡ 1
Nn

|MDKM
n (Xn,Yn)|2

|MDKM,bpm
n (Xn,Yn)|2

pc(Xc ,Yc) ≡ 1
Nc

|MmDKM
c (Xc ,Yc)|2

|MmDKM,bpm
c (Xc ,Yc)|2

I we fit the data with

|Mn(Xn,Yn)|2 = |Mbpm(Xn,Yn)|2Nnpn(Xn,Yn)

|Mc(Xc ,Yc)|2 = |Mbpm(Xc ,Yc)|2Ncpc(Xc ,Yc)
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Isospin breaking II: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

I we remove the corrections due to real photons and to the
Coulomb pole

I we calculate the ratios Nn,c and pn,c(Xn,c ,Yn,c)

I we fit the data with

|Mn(Xn,Yn)|2 = |Mbpm(Xn,Yn)|2Nnpn(Xn,Yn)

|Mc(Xc ,Yc)|2 = |Mbpm(Xc ,Yc)|2Ncpc(Xc ,Yc)



iso-breaking Data fit

How we fit the data GC, Lanz, Leutwyler, Passemar (16)

I our dispersive amplitude, (corrected for isospin breaking)
and linear in the subtraction constants

I four up to six subtraction constants: α0, β0, γ0, δ0, β1, γ1

I the normalization of the Dalitz plot is arbitrary,
so α0 (→ H0) is not fitted

I available data are from:
I KLOE (2016)
I WASA@COSY (2014)
I Crystal Ball@MAMI (2007)
I several values for α are in the PDG



iso-breaking Data fit

How we fit the data GC, Lanz, Leutwyler, Passemar (16)

I our dispersive amplitude, (corrected for isospin breaking)
and linear in the subtraction constants

I four up to six subtraction constants: α0, β0, γ0, δ0, β1, γ1

I the normalization of the Dalitz plot is arbitrary,
so α0 (→ H0) is not fitted

I available data are from:
I KLOE (2016)⇐
I WASA@COSY (2014)
I Crystal Ball@MAMI (2007)
I several values for α are in the PDG



iso-breaking Data fit

Fit results GC, Lanz, Leutwyler, Passemar in prep.

β0 γ0 δ0 β1 γ1 χ2
KLOE χ2

th

fitχ4 16.9 -29.4 – 6.6 – 940 0

fitK4 17.3(7) -34.8(7.1) – 6.4(8) – 385 0.61

fitKχ4 17.2(6) -34.7(7.1) – 6.4(7) – 385 0.60

fitK5 13.6(2.0) 13.5(24.5) -120(59.5) 12.6(3.3) – 376 29

fitKχ5 16.3(8) -21.2(9.5) -34.7(18.5) 8.1(1.1) – 380 0.99

fitK6 -17.9(10.3) -38.8(76.8) -61.9(77.6) 72.6(19.2) -290(89) 369 898

fitKχ6 16.2(1.2) -21.3(10.3) -34.5(18.6) 8.2(2.2) -1(10.8) 380.0 1.02

fitK(χ)n=fit to KLOE with n subtr. const.; χ= with chiral constraints
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