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Maxwell’s theory of electromagnetism

Lagrangian leading to Maxwell equations

1 .
['Maxwell = _ZF,uVFW/ - A,u./u

where
Fp,l/ = 8,uAl/ - al/A,u A,LL = (¢,A), j,u = (pv’a)

At the microscopic level, the current is made out of fermions,
described by Dirac’s theory:

1 - .
LQEp = —ZFWFW + Zibi [ilD — mj] 4;

QED is a gauge theory=theory defined by local invariance
D, =0, +ieA, the relevant covariant derivative
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Intro QCD xPT

Theory of strong interactions: QCD

Strong interactions are also described by a gauge theory

the local invariance group is larger than that of QED:
QED: U(1) — QCD: SU(3)

and the covariant derivative changes accordingly

D, =0, +ieA, — D, =0d,+ igA,

1 , _
Locp = —ZTI[GWG“ ]+ ; Qi(iD— mg,)q;

The behaviour of QED and QCD is very different
Determining the fermion masses m; in the two theories is a
completely different matter
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Intro QCD xPT

Quark masses

QCD Lagrangian:

1 _ . =
EQCD = —ZTI‘GM,,G“V + Z QI(’LD— mq,-)Qi + Z Qj(lw_ mQj)(Dj
i /

> In the limit mg, — 0 and mq, — oc: Mhadrons o< A

> Observe that mg, < A while mg, > A [A ~ Mp]

» Quarks do not propagate:
quark masses are coupling constants! (not observables)

they depend on the renormalization scale p (like ag )
for light quarks by convention: p = 2 GeV
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Intro QCD XxPT

The QCD spectrum

» the lowest-lying particles in the spectra are well
understood: they would become exactly massless in the
chiral limit of QCD (Goldstone bosons)

» the dynamics of strong interactions at low energy can be
understood on the basis of chiral symmetry

(chiral perturbation theory = xPT)

» the positions of the low-lying resonances is more difficult to
determine and understand

» they set the limit of validity of the chiral expansion
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Intro QCD xPT

Systems with spontaneous symmetry breaking

» If a symmetry is spontaneously broken the spectrum
contains massless particles — the Goldstone bosons

» symmetry constrains the interactions of the Goldstone
bosons — their interactions vanish at low energy

» Green (correlation) functions contain poles and cuts due to
the exchange of Goldstone bosons

» the vertices, on the other hand, can be expanded in
powers of momenta and obey symmetry relations

» effective Lagrangian: systematic method to construct this
expansion, respecting symmetry and all the general
principles of quantum field theory Weinberg (79)

» The method leads to predictions — even very sharp ones
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Quantum Chromodynamics in the chiral limit

n Q C

1 _ . _ .
[’(()OC)D = _ZTrGWGW +qLiPqL + griPqr q

I
~

Large global symmetry group:

SU(3)L x SU(3)p x U(1)y x U(1)a

1. U(1)y = baryonic number
2. U(1)4 is anomalous
3

SU(3),. x SU(3)r = SU(3)y

= Goldstone bosons with the quantum numbers of
pseudoscalar mesons will be generated
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Quark masses, chiral expansion
In the real world quarks are not massless:

Laocp = ES’&D + Lm, Lm:=-qMq

my
M = my
msg

the mass term L, can be considered as a small perturbation =
Expand around Ligéo = Expand in powers of myq
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Quark masses, chiral expansion
In the real world quarks are not massless:

Laocp = £§§’2;D + Lm, Lm:=-qMq

my
M = my
msg

the mass term L, can be considered as a small perturbation =
Expand around LigéD = Expand in powers of myq

Chiral perturbation theory, the low-energy effective theory of
QCD, is a simultaneous expansion in powers of momenta and
quark masses



Intro QCD xPT

Quark mass expansion of meson masses

General quark mass expansion for the P particle:
M3 = Ms + (P|gMq|P) + O(m)
For the pion M3 = 0:

1

M3 = —(my + mg) 5 (013q|0) + O(m5)

™

where we have used a Ward identity:

_ 1 _
(wlaqir) = - =5(0/agl0) = By

™

(0|gq|0) is an order parameter for the chiral spontaneous
sym metry breaking Gell-Mann, Oakes and Renner (68)
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Quark mass expansion of meson masses

Consider the whole pseudoscalar octet:

M2 = (my+ mg)By+ O(m3)
M2, = (my+ms)By+ O(m?)
Mz, = (mg+ ms)By+ O(m)
1
M = §(mu + mg + 4ms) By + O(m3)



Intro QCD xPT

Quark mass expansion of meson masses
Consider the whole pseudoscalar octet:
M2 = (my+ mg)By + O(m3)
(my 4+ ms)By + O(mg)
(mg + ms)Bo + O(mM)

(my + mg + 4ms)By + O(m3)

W =

Consequences: (M= (my+ my)/2)
MZ/M? = (ms+m)/2M = ms/Mm =259
M2/ME = (2ms+M)/3Mm = mg/i =243
3MZ = AMg — M? Gell-Mann—Okubo (62)
(0.899 = 0.960) GeV?
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Quark mass expansion of meson masses
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Intro QCD xPT

How to determine quark masses
» From their influence on the spectrum XPT, lattice

> Mg > A
MC?q,- = mg + O(N)

> Mg <A
Mz, = Mo j + O(mg,, mg;) Mojj = O(N)
In both cases need to understand the O(A) term
» From their influence on any other observable XPT, sum rules

Quark masses are coupling constants
= exploit the sensitivity to them of any observable
[e.g. n decays, spectral functions from 7 decays, etc. |
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(Heisenberg 1932)

Symmetry of the QCD Lagrangian if my, = my

Locp = L%y — M(Tu + dd)



Intro QCD xPT

Isospin symmetry

Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if m, = my q

Il
/~
Q <
~

Lqcp = ﬁg’éD — mqq



Intro QCD xPT

Isospin symmetry

Originally introduced as symmetry between proton and neutron

(Heisenberg 1932)

Symmetry of the QCD Lagrangian if m, = my q

Il
/~
Q <
~

Lqcp = ﬁg’éD — mqq

Broken by:
my # my and Qu # Qg

strong and electromagnetic interactions



Intro QCD xPT

mg -+ my is easier to get than my — m,

mg, My <N = Lmn=—mylu— mgdd = small perturbation

However:
mg+my,_ - uu — dd
Lm —%(uu+dd)+(md—mu)T
= —m qq +(mg — my) grsq
~~ —~—
Oi=0 Oj=1
selection rules make the effect of O,—{ well hidden
= M responsible for the mass of pions
but (my — my) only contributes at O(p*) (atiny 6M,0)

better sensitivity in K masses
but the em interaction competes as a source of isospin breaking
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Outline

How to determine m, — my



my — my

First estimates

Leading-order masses of = and K:

Quark mass ratios:

M Mi*_M§°+M’2(+N067
md B M$+ + M}Z(O - Ml2<+ o )
ms Mf(o + Mg = M2, ~ 20
mg M2, — MZ, + M2,
mud = (mu —+ md)/2 ~ 54 |\/|eV SU(6) relation, Leutwyler (74)
From an analysis of the p-n mass difference: Gasser & Leutwyler (75)
my ~ 4 MeV my ~ 6 MeV ms ~ 135 MeV



my — my

Electromagnetic corrections to the masses

According to Dashen’s theorem Dashen (69)
M72ro = Bo(my + my)
Mi* = BO(mU + md) + Aen
M;z(o = By(mg + ms)
Miz(‘*' = BO(mU + ms) + Aem
Extracting the quark mass ratios gives Weinberg (77)
my M;2<+_M;2<0+2M,2ro —Mﬁ .
My M/Z(O - M;2(+ + M72r+
ms Mi2(0+M!2<+_M72r+ _ 50,1

Mg M;z(o - M;2(+ + M72r+



my — my

Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)
M2 ms + M
M T am 1+ A+ O(mP)|
M2, — M2 my —m
KO K+ d — My
K KRt _ 7 7Y A
Ve e o 1+ 2w+ O(m)]
8 M2 M2

The same O(m) correction appears in both ratios
= this double ratio is free from O(m) corrections
mz — m? Mi}% M2 — M2
m2—mg M2 Mf(o M2,

Q? [1 +O(m )]
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Higher order chiral corrections

Mass formulae to second order Gasser-Leutwyler (85)
M2 Mms + M 5
M2, — M2 mg —m
KO K+ _ d u 2
MZ — M2 e |1+ Bu+O(nf)
8(M2 — M2
Ay M(ZLS — Ls) + x-logs

F2

™

The same O(m) correction appears in both ratios
= this double ratio is free from O(m) and em corrections

(M2, + M2, — M2, + M2))(M2, + M2, — M2, — M?,)
AMZ, (M2, — M2, + M2, — M2,)

Q3 =24.3
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Violation of Dashen’s theorem
In pure QCD (Mp = Mp,_ )

M = Bo(ms + my) + O(mg)

Mo = Bo(ms+ mg) +O(m3)
= My+ — Mo = Bo(my — my) + o(mg)
Define em contributions to masses
My =Mp — Mp, A} =ME— M3
Dashen’s theorem: Ap, =N,
and its violation

Ny — DYy — AL, + Ny = e,

A, = M2, — M72ro]



Estimates of the size of Dashen’s theorem violation

xPT + model-based calculations:

1.0 Donoghue-Perez (97) Q=215 (wp

0.8 Bijnens-Prades (97) Q = 22 EniL mode)
€ =
1.5 Anant-Moussallam (04) Q= 20.7(Sum rules)

Lattice-based calculations (the value of Q is calculated in xPT at NLO)

(0.50(8) Duncanetal. (96) Q=229

0.5(1) RBC (07) Q=229
0.78(6)(2)(9)(2) BMW (11) Q=221

e=4 0.65(7)(14)(10) MILC (13) Q=226
0.79(18)(18) RM123 (13) Q=221
0.73(2)(5)(17) BMW (16) Q=222

L 0.73(3)(13)(5) MILC (16) Q=222

@

Value quoted in FLAG-3: e =0.7(3)
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FLAG-3 summary of the quark masses

all masses in MeV

Nr Mug ms Ms /Mg
2+41+1 3.70(17) 93.9(1.1) 27.30(34)
2+1 3.373(80) 92.0(2.1) 27.43(31)
2 3.6(2) 101(3) 27.3(9)
Ne my My my/Mmgy R Q
2+1+1  2.36(24)  5.03(26) 0.470(56)  35.6(5.1) 22.2 (1.6)

241 2.16(9)(7) 4.68(14)(7) 0.46(2)(2) 35.0(1.9)(1.8)  22.5(6)(6)
2 2.40(23)  4.80(23) 0.50(4)  40.7(3.7)(2.2) 24.3(1.4)(0.6)
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Light quark masses

7 FIAG2016 Mud
: FLAG average for Nj=2+1+1
~ ETM 14
I FLAG average for Nj=2+1
z RBC/UKQCD 14B
RBC/UKQCD 12
PACS-CS 12
Laiho 11
BMW 10A, 108
- —0— PACS-CS 10
+ MILC 10A
~ HPQCD 10
RBC/UKQCD 10A
Il Blum 10
> —0— PACS-CS 09
HPQCD 09A
MILC 09A
MILC 09
O PACS-CS 08
RBC/UKQCD 08
CP-PACS/JLQCD 07
HPQCD 05
—>— MILC 04, HPQCD/MILC/UKQCD 04
FLAG average for Ny=2
Diirr 11
ETM 108
~ —0 JLQCD/TWQCD 08A
I = RBC 07
i —H +— ETM 07
z H—O—— QCDSF/UKQCD 06
—{—t— SPQcdR 05
o [ QCDSF/UKQCD 04
CP-PACS 01
o —A— PDG
c @ Dominguez 09
[ —o— Narison 06
< ——— Maltman 01
i . ! . h
2 3 4 5 6 MeV

Ni=2+1:  mMS(2GeV) = 3.37(8)MeV  (~2.4%)
more precise than PDG
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— FIAG2016 ms

FLAG average for Ng=2+1+1
HPQCD 14A
ETM 14

Ni=2+1+

FLAG average for Ny=2+1

RBC/UKQCD 14B
RBC/UKQCD 12
PACS-CS 12
BMW 10A, 10B
PACS-CS 10
HPQCD 10
RBC/UKQCD 10A
Blum 10
PACS-CS 09
HPQCD 09A
MILC 09A

Ne=2+1
.
]
L]

i |

FLAG average for N¢=2

il
= ALPHA 12
H Dirr 11
— ETM 10B
——{— RBC 07
— ETM 07
— QCDSF/UKQCD 06
—h— PDG
—— Dominguez 09
—— Chetyrkin 06
Jamin 06

— Narison 06
[ ] Vainshtein 78

70 80 90 100 110 120 MeV
Ne=2+1: mifS(2GeV)=92.0(21)MeV (~2.3%)
more precise than PDG

Ne=2
T
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Light quark masses

FIAG2016 Ms/Mug

T T T T T
FLAG average for N;=2+1+1
FNAL/MILC 14A
ETM 14

FLAG average for Ny=2+1
RBC/UKQCD 14B
RBC/UKQCD

PACS-CS 12

Laiho 11

BMW 10A, 10B
RBC/UKQCD 10A

Ne=24+1+1

Ne=2+1

RBC/UKQC
MILC 04, HPQCD/MILC/UKQCD 04
FLAG average for N¢=2

[] ETM 14D
ETM 10B
RBC 07

Ne¢=2
.

ETM 07
— QCDSF/UKQCD 06

PDG
— Oller 07
G Narison 06
—— Kaiser 98
—— Leutwyler 96
q ) ) Weinberg 77

22 24 26 28 30 32 34

Ny=2+1: ms/myqg = 27.43(31)  (~1.1%)
more precise than PDG

pheno.
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Outline

n— 3mand Q
The n — 37 amplitude
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n — 3m and yPT

The decay n — 3w is purely isospin violating:

in an isospin symmetric world it cannot happen

and its mostly due to strong isospin breaking
(electromagnetic contributions are suppressed) Sutherland 66
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n — 3m and yPT

Lowest order chiral amplitude: Sutherland (66), Osborn, Wallace (70)

M(n = wtrr%) = A(s,tu)  s= (e + P )P

By (my — my) 3(s — so) > >
A =
(s,t,u) 3V3F2 VE — M2 + O(p°)| + O(e"m)
Relate m, — my to meson masses Dashen (69)

Bo(my — my) = (Mg+ — Mzo) + O(m?)
LO chiral prediction

Fn—ntn 7%) ~70eV < Teyp = 299+11 eV
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n — 3m and yPT

Lowest order chiral amplitude: Sutherland (66), Osborn, Wallace (70)

M(n = wtrr%) = A(s,tu)  s= (e + P )P

Bo(my — my) 3(s — so) > >
A —

(s,t,u) 3V3F2 VE — M2 + O(p°)| + O(e"m)
Relate m, — my to meson masses Dashen (69)
Bo(my — my) = (Mg+ — Mzo) + O(m?)

NLO chiral prediCtion Gasser-Leutwyler (85)

F(n— 77 %) ~70eV — 160450 eV < Teyp = 299411 eV

Large rescattering effects or violations to Dashen’s theorem?
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Amplitudes n — 37 beyond xPT

Decay amplitudes

Aln — ntr 7% = Ag(s,t,u)
Aln —37%) = As(s.t,u)

Both vanish in the isospin limit and do not receive O(aen)
contributions Sutherland (66)

Ac(s,t,u) = —N(M2o—M2.,) [M(s, t, u) + O(6)]
An(s, t,u) = —N(M2, —M2..) [M(s, t, u)+M(t, u, s)+M(u, s, t)+O(5)]

N .= (3\@,:7%)71 § ~ (my — My, ctem)



n — 3wand Q n — 37w

Amplitudes n — 37 beyond xPT

Decay amplitudes

Alp— ntn %) = Ads tu)
Aln — 370 = As(s tu)

Both vanish in the isospin limit and do not receive O(aen)
contributions Sutherland (66)

Ac(s,t,u) = —N(M2o—M2.,) [M(s, t, u) + O(6)]
An(s, t,u) = —N(M2, —M2..) [M(s, t, u)+M(t, u, s)+M(u, s, t)+O(5)]
N :=(3V3F2)™' 5~ (my— my,aem)

» Leading contribution M(s, t, u) isospin-symmetric:
one amplitude describes both decay channels
» O(6)-piece different for the two channels
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Amplitudes n — 37 beyond xPT

Decay amplitudes

Aln — ntr 7% = Ag(s,t,u)
Aln — 370 = As(s tu)

Both vanish in the isospin limit and do not receive O(aen)
contributions Sutherland (66)

Ac(s,t,u) = —N(M2o—M2.,) [M(s, t, u) + O(6)]
An(s, t,u) = —N(M2, —M2..) [M(s, t, u)+M(t, u, s)+M(u, s, t)+O(5)]
N :=(3V3F2)™' 5~ (my— my,aem)

» Leading contribution M(s, t, u) isospin-symmetric:
amenable to a dispersive treatment

» O(d)-piece modifies the phase space and the vars. s, t, u
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Q from the decay n — 3«

Steps leading to a determination of Q from n — 37

1.
2.

3.

estimate the corrections O(4) (xPT)

evaluate the isospin-symmetric amplitude M(s, t, u)
(xPT or DR)

compare the evaluated total width (including O(‘Sl corr.)
with the measured one and determine: —(M2,—Mz )

. invoke the low-energy theorem

o e\ ME(ME—M2)
(U, — i) = )

to obtain a value for Q
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Q from the decay n — 3«

Steps leading to a determination of Q from n — 37
1. estimate the corrections O(9) (xPT)

2. evaluate the isospin-symmetric amplitude M(s, t, u)
(xPT or DR)

3. compare the evaluated total width (including O(4) corr.)
with the measured one and determine: —(M2,—Mz )

4. invoke the low-energy theorem
\ \ M2(M2 — M?)
(MFZ(O - Mf2<+) = K Q§M72r
to obtain a value for Q

Data on the Dalitz plot M(s, t,u)/M(sp, So, So) put constraints
on the dynamical calculation for M(s, t, u)
but the essential, purely theory input is: M(sp, So, So)
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KLOE data
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Momentum dependence

o1 * KLOE | 7
[ fitk,
0.05~ —_— fi'[K6 N
LO [ - ]
Dc' Dc [ E . f|'[K)(6
o R
-0.05:— \‘
]
015 // ]
n ]
7/ P S S S S S U S E 1
027 05 0 0.5 1
Y
c

GC, Lanz, Leutwyler, Passemar in prep.
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Momentum dependence

GC, Lanz, Leutwyler, Passemar in prep.
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n — 3wand Q

Momentum dependence
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GC, Lanz, Leutwyler, Passemar in prep.
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Dalitz plot in the neutral channel

Fit to the charged channel = prediction for the neutral channel
Wh|Ch agrees perfectly W|th MAMI data GC, Lanz, Leutwyler, Passemar in prep.

0.98 |
dZ
n

0.96 |

+ MAMI |

PDG 2016 E
0.94 L = prediction {
0.92 \ ‘ w ‘ ! ‘ ! ‘
0 0.2 0.4 0.6 0.8
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Dalitz plot in the neutral channel: value of «

a=slopeatz=0
Comparison with other determinations:

ChPT O(p?)
—t—e— ChPT O(p®)

Kambor et al.

Kampf et al.

NREFT, Schneider et al.

JPAC, Guo et al.

KT-elast, Albaladejo-Moussallam
KT-C.C., Albaladejo-Moussallam
Dispersive, fit to charged KLOE

GAMS-2000 (1984)

Crystal Barrel@LEAR (1998)
Crystal Ball@BNL (2001)
SND (2001)
WASA@CELSIUS (2007)
WASA@COSY (2008)

Crystal Ball@MAMI-B (2009)
Crystal Ball@MAMI-C (2009)
KLOE (2010)

PDG average

" ! " ! ! " " !
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
«
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Dalitz plot in the neutral channel

Gullstrém, Kupsc & Rusetsky 2009
E== prediction

GC, Lanz, Leutwyler, Passemar, in prep.
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Ratio of decay rates

The ratio of decay rates for the two channels can also be
calculated and with remarkable accuracy Gasser-Leutwyler (85)

The normalization Hy also drops out in this ratio

As it turns out most uncertainties cancel out, giving:

M(n — 3x9)
M(n — mtr—n0)

B

= 1.44(4)

which agrees perfectly with the measured value

Bppg(our fit) = 1.426(26), Bppg(our average) = 1.48(5)



n — 3mand Q n — 37
Determination of Q GG, Lanz, Leutwyler, Passemar (16)
HyY© =1.176(53) and I'(n — "7~ 7°) = (299 + 11) eV yield:
(M2, — [Z.) = 6.27(38)1072 GeV?
which implies:
(M2, — M2 )qep = —2.38(38)10 2 GeV?

This corresponds to
e =0.9(3)

in agreement with recent lattice determinations:

0.74(18)  BMW

) 073(14)  MILC

= 0.50(6) QCDSF/UKQCD
0.801(110) RMI123
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Determination of Q 0, Lanz, Lutnyler, Passermer (16
HyY© =1.176(53) and I'(n — "7~ 7°) = (299 + 11) eV yield:
(M2, — [Z.) = 6.27(38)1072 GeV?
which implies: (upon use of)

o oo ) ME(ME — M2)
(.~ ) LMD (1 o)

21.99(70) n—ata xO
Q - 0
22.04(70) n— 37

somewhat lower than recent lattice direct determinations

o_ [ 2340(64) BMW
~ 1 23.8(1.1) RMI23

=  Q=220(7)

Unexpectedly large O(m?) effects?
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Single vs Double Quark Mass Ratios
Isospin-limit ratio S:

S= Ms

=27.43(31) FLAG (17)
Myg

MZ
T =(S+D(1+D8s)  As=-0055

Isospin-breaking ratio R:

— M2 — M2
p=Ts"Muw Tk “¥r _ R4 AR)
mg—my W2, - R,

Relation among R, Sand Q:  Ag,Ag~ O(m), Aq~ O(m?)

02:%R(s+1) = (1+08g)=(1+2g)(1 +AR)



n — 3wand Q

Relation among R, S and Q:

02:%R(S+1) =

n — 3w

Single vs Double Quark Mass Ratios

As, Ap ~O(m), Agq~ O(m?)

(1+Aq)=(1+As)(1+AR)

Q Ag AR Ao
BMW 23.4(0.4)(0.3)(0.4) | -0.063 -0.028 | -0.089
RMi23 | 23.8(1.1) -0.042 -0.060 | -0.099
this work* | 22.0(7) -0.055(11) | 0.061(13) | 0

* .
GC, Lanz, Leutwyler, Passemar, in prep.
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Quark mass ratios: results
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_Ss [ ]
15 : 15
Intersection ]
1or ® Gasser & Leutwyler 1975 110
N ® Weinberg 1977 ]
3 77 Gasser 1981 R
5t 1 m/m, = 27.43(31) FLAG 2016 \ 5
r 3 Q=22.0(7) this work :
L ‘ ‘ ,
% 0.2 0.4 0.6 0.8 10
m
_u
My

mu — 0 44(3) GC, Lanz, Leutwyler, Passemar, in prep.
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Quark mass ratios: results

0.35 0.4 5 0.5 0.55 0.6 0.65 0.7
L e L e s s s e s s e
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m—Z == 044(3) GC, Lanz, Leutwyler, Passemar, in prep.
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Outline

Summary



Summary

Summary

» Quark masses are fundamental and yet unexplained
parameters of the standard model

» | have discussed methods to determine the values of the
light quark masses

» | have reviewed determinations of my — m, based on
lattice and xPT + model estimates

» | have discussed the extraction of the quark mass ratio Q
from n — 37 decays based on dispersion relations

work in collab. with S. Lanz, H. Leutwyler and E. Passemar (16) and in progress

» lattice calculations of Q somewhat higher and show a
weird pattern in the chiral series of quark mass ratios:
lattice calculations in pure QCD could resolve this puzzle
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iso-breaking Data fit

The spectrum in lattice QCD

— [ x (@sat @sa)) 8 Zc e

My = lim My(L,a)  Mx(L &) = Ex(p = 0)
a0
y

°* 9759 qlgq

X < L s fermion propagator




iso-breaking Data fit

D |SperS|Ve approaCh GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t, u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)

M(s, t, u) = Mo(S)+(5— )My (t)+(s—t)M; (u)+M2(t)+M2(u)—§M2(s)

assumes only: disc[t/(s)] =0  V¢>2in all channels

Analytic properties of the M(s) functions: [s > 4M2]
disc[My(s)] = disc[t!(s)] = t!(s)e":S) sin 5)(s)

tl(s) = Mi(s) + My(s) = part. wave, [ = isospin, £ = ang. momentum

Dispersion relation for My anisovich, Leutwyler (96), GG, Lanz, Leutwyler, Passemar, (16)

s2/<>°ds, Wo(s') sin 89(s") }

T e |Qo(s)|s(s' — s — ie)

Mo(s) = Qo(s) {ao + BosS+ 7032 + 5033 +



iso-breaking Data fit

D |SperS|Ve approaCh GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t, u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)
M(s, t, u) = Mo(S)+(s—u)M (t)+(s—t)M; (u)+M2(t)+M2(u)—§M2(s)
assumes only: disc[t/(s)] =0  V¢>2in all channels
Analytic properties of the M(s) functions: [s > 4M2]
disc[M;(s)] = disc[t!(s)] = ti(s)e*® sin 5l (s)

tl(s) = Mi(s) + My(s) = part. wave, [ = isospin, £ = ang. momentum

DiSperSion I’ela’[ion for M1 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

0 insl(s M /
Mi(s) = Q4(s) {518 + 1182 + ;-AMZdS’ 918(2”13(,?3)/ _1(33_) i) }




iso-breaking Data fit

D |SperS|Ve approaCh GC, Lanz, Leutwyler, Passemar, (16)

Isospin decomp. of M(s, t, u) Stern, Sazdjian, Fuchs (93), Anisovich, Leutwyler (96)
M(s, t, u) = Mo(S)+(s—u)M (t)+(s—t)M; (u)+M2(t)+M2(u)—§M2(s)
assumes only: disc[t/(s)] =0  V¢>2in all channels
Analytic properties of the M(s) functions: [s > 4M2]
disc[M;(s)] = disc[t!(s)] = ti(s)e*® sin 5l (s)

tl(s) = Mi(s) + My(s) = part. wave, [ = isospin, £ = ang. momentum

DiSperSion I’ela’[ion for M2 Anisovich, Leutwyler (96), GC, Lanz, Leutwyler, Passemar, (16)

2 oo i S2( o/ M /
M2(S) — QQ(S) i/ ds’ sin 60(23 ) 2(S ) .
TJame  |Q(8')|s"“(8" — s — ie)
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Solution of the dispersion relations oo, ane, Leuwyier, Passemar, 16)

Solutions of the dispersion relations are linear in the subtraction
constants «q, B, -- ., 71!

Mi(S) = aoMP(s) + BoM°(S) + - - - + 11 M) (s)

) I — 1iteration ]
e a — 2 iterations / 1

0 0 . . /
MO Ml os- + 3 iterations B
2 — solution / 1

0.8 //
e
T £ — 1iteration ]
oal & — 2 iterations
Va + 3iterations

o2 I — solution

4 : A I T I S i | Lo 1

2 a4 6 8 10 12 14 16 18 20

2
siM_



iso-breaking Data fit

Solution of the dispersion relations oo, ane, Leuwyier, Passemar, 16)

Solutions of the dispersion relations are linear in the subtraction
constants «q, B, -- ., 71!

Mi(S) = aoMP(s) + BoM°(S) + - - - + 11 M) (s)

*r — 1iteration
a — 2 iterations o
|V|2 % - 3iterations 0

— solution n =z

08

0¢ N - e

S e * 4 — Lliteration ]

oab e B oal Pl — 2 iterations N
~ K ! !

S 4 + 3iterations 1

ol . | oz J — solution R

| L | | L L | L ‘\“" 4 J’ S S S Y I | \7

2 a4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

2 2
siM_ sIM_



iso-breaking Data fit

Isospin breaking

Dispersive calculation performed in the isospin limit:
M, =M+ e=0

» we correct for M o # M,+ by “stretching” s, t, u =
boundaries of isospin-symmetric phase space =
boundaries of physical phase space

» analysis of Ditsche, Kubis, Meissner (09) used as guidance
and check. Same for Gullstrém, Kupsc and Rusetsky (09)

» ¢ # 0 effects partly corrected for in the data analysis
for the rest we rely on one-loop ChPT — formulae given by
Ditsche, Kubis, Meissner (09)



iso-breaking Data fit
Isospin breaking I: boundary preserving map
Phase space boundary in the limit Mo = M,+: z = Z¢;

1

Boundary of physical region
Z= Zcm
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iso-breaking Data fit

Isospin breaking I: boundary preserving map

Mandelstam variables in the isospin limit (M,; = M, = isoB)
used in our dispersive treatment: s, t, u

S+t+u=M:+3M
Mandelstam variables in the physical channels:
Sct+tot Uo =M, +2M2 + M%,  Sp+tn+ Up = M, + 3M?,

Define a mapping (X;, Y;) — (X,.bpm, Y,.bpm), for i = ¢, n such that
boundary/center of phys. reg. — boundary/center of isoB phase sp.

MPP™(XG, Vo) = MEP(XEP™ (X, o), Y™ (Vo))

is used to fit the data in the charged channel



iso-breaking Data fit

Isospin breaking Il: em corrections

We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

» we remove the corrections due to real photons and to the
Coulomb pole

» we calculate the ratios Ny ¢ and pn.c(Xn.c, Ync)

MK (0,0)P IMPXM(0,0) 2
c

N, = N, =

n ‘MEKM,bpm(O7O)|2 c ‘MEKM,bpm(070)|2

DKM 2

P YD) = i,

n|Mn 5 (Xn, Yn)|

mDKM V12
Pe(Xe, Ye) = NL MrrfI]gKMbp(mXC’ Bl ,

o [P (X, Yo)|



iso-breaking Data fit

Isospin breaking Il: em corrections
We rely on the one-loop ChPT calculation of Ditsche, Kubis,
Meissner (09) in the following way:

» we remove the corrections due to real photons and to the
Coulomb pole

» we calculate the ratios Ny ¢ and pn.c(Xn,c, Yn,c)
» we fit the data with

|Mn(Xn, Yn)\2 = ’Mbpm(xna Yn)\anpn(Xm Yn)

|Mc(Xe, Yc)‘z = ’Mbpm(XCa YC)|2NCpC(XCa Ye)



iso-breaking Data fit

HOW We flt the data GC, Lanz, Leutwyler, Passemar (16)

» our dispersive amplitude, (corrected for isospin breaking)
and linear in the subtraction constants

» four up to six subtraction constants: ag, 59, Yo, 90> 51, V1

» the normalization of the Dalitz plot is arbitrary,
SO «g (— Hp) is not fitted

» available data are from:

KLOE (2016)

WASA@COSY (2014)

Crystal Ball@MAMI (2007)

several values for « are in the PDG

v

v vy



iso-breaking Data fit

HOW We flt the data GC, Lanz, Leutwyler, Passemar (16)

» our dispersive amplitude, (corrected for isospin breaking)
and linear in the subtraction constants

» four up to six subtraction constants: ag, 59, Yo, 90> 51, V1

» the normalization of the Dalitz plot is arbitrary,
SO «g (— Hp) is not fitted

» available data are from:

KLOE (2016) «

WASA@COSY (2014)

Crystal Ball@MAMI (2007)

several values for « are in the PDG

v

v vy



Fit results

GC, Lanz, Leutwyler, Passemar in prep.

iso-breaking Data fit

Bo Yo do B i X12<LOE thh
fityy 16.9 -29.4 - 6.6 - 940 0
fitKy 17.3(7) -34.8(7.1) - 6.4(8) - 385 0.61
fitKyy | 17.2(6) -34.7(7.1) - 6.4(7) - 385 0.60
fitKs 13.6(2.0) 13.5(24.5) | -120(59.5) | 12.6(3.3) - 376 29
fitKyys | 16.38) -21.2(9.5) -34.7(18.5) | 8.1(1.1) - 380 0.99
fitKe -17.9(10.3) | -38.8(76.8) | -61.9(77.6) | 72.6(19.2) | -290(89) 369 898
fitKye | 16.2(1.2) -21.3(103) | -34.5(186) | 8.2(22) -1(10.8) 380.0 1.02

fitK(x)n=fit to KLOE with n subtr. const.; x= with chiral constraints
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