
OPTICAL PROPERTIES OF SOLIDS

OPTICAL SPECTROSCOPY THEORY
(1950-1960)

Mainly R and T • Band structure calculations
• One-electron approximation
• Semi-empirical models

Microscopic interpretation of the fundamental characteristics of the optical response in solids

after 1960
• Modulation spectroscopy • Self-consistent methods

(TR, ER, WLM, PR, PZR, ,,,) • Ab-initio calc. (total energy ,
• Spectroscopic ellipsometry (SE)                                                         density functional….)
• Photoluminescence spectr. (PL) • Surface and interface  prop.
• Raman spectr. (RS) • Many-bodies,  correlations
• Photoemission spectr. (PES) • Molecular dynamics
• Electron spectroscopies    (EELS, Auger)               
• New growth and processing  techniques

(epitaxy         Q-size structures)
• New light sources  (synchrotron, laser CW and pulsed,…)
• Microprobes   (HRTEM, STM, AFM, SNOM, …)



Interaction of electro-magnetic 
field with matter

In linear materials, the polarization density   (in coulombs per square meter) and 
magnetization density   (in amperes per meter) are given by:

and the   and   fields are related to   and   by:

where:
χe is the electrical susceptibility of the material,
χm is the magnetic susceptibility of the material,

is the electrical permittivity of the material, and
µ is the magnetic permeability of the material



Maxwell Equations
In non-dispersive, isotropic media, ε and µ are time-independent scalars, 
and Maxwell's equations reduce to

In a uniform (homogeneous) medium, ε and µ are constants independent 
of position, and can thus be furthermore interchanged with the spatial 
derivatives.
More generally, ε and µ can be rank-2 tensors (3×3 matrices) describing 
birefringent (anisotropic) materials.



REAL AND COMPLEX FORMALISM

In the case of time-dependent e.m. fields, there will generally be a phase shift between the 
motion of the charge carriers and the electric field E (similarly to what happens in A.C. 
circuits). In such cases the complex formalism is particularly convenient to describe phase 
shifts, and in addition to describe dispersion and absorption effects at the same time. 
Complex fields are usually defined, the real parts of which have physical meaning and are the 
ones involved in Maxwell’s eqs. 

REAL FORMALISM
E = EO cos ωt                              x = C EO cos (ωt + ϕ)                     x’ = - C ω EO sen (ωt + ϕ)

J = eNx’ = - eNCω EO (sen ωt  cos ϕ + cos ωt sen ϕ)
90° out of phase vs E                 in phase with E

(polarization current  - no  dissipation)                                               (conduction current – dissipation)

COMPLEX FORMALISM
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ε1(ω) ≡ ε (ω) describes the dispersion processes, i.e. the displacement r of the charges in-
phase with E p = e r =  χ E
ε2(ω) ≡ 4 πσ (ω)/ω describes the energy absorption, i.e. the velocity v of the charges in-
phase with E

W = < J ⋅ E > = σ < E2 > + ε1 < ∂E/∂t  ⋅E > = σ < E2 > + 0

Only for ω = 0 (static field) σ ≡ σ0 is due to free-carriers (conductor) and ε1 ≡ ε to bound-
carriers (dielectric). For ω > 0 the distinction between free- and bound-carriers is 
meaningless (for ω →∞ the charges are all “free”).

In order to elucidate the meaning of ε1 and ε2 let us consider the Maxwell eqs.:
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• E, ε(ω), σ(ω) appearing in the Maxwell eqs. are macroscopic quantities, average on 
volume elements ∆V (with λ >> ∆V >> a3) of microscopic quantities which vary rapidly on 
the atomic scale.

• The displacement of one point-charge does not depend on E but on Eloc, which can differ 
greatly from E and which should be generally calculated in a self-consistent way.

• In an anisotropic medium 

ε (ω) ε (ω) complex dielectric tensor

ε1(ω) and ε2(ω) are always symmetric tensors          they can be diagonalized with respect 
to principal axes, depending on ω. Generally the directions of the principal axes are 
different for ε1(ω) and ε2(ω) , but they do coincide for crystals with symmetry at least as 
high as orthorhombic. In a cubic crystal εij reduces to a scalar quantity.

∼ ∼

≈

∼

∼

• In a nonlinear dielectric medium, it is possible to expand the relation between P and E
in a Taylor series about E = 0. Thus

P =  (χ E + χ(2) E2 + χ(3) E3 +…)

where the χ(n) coefficient describes the n-th order nonlinear effect. The D’Alembert 
equation is not applicable to e.m. waves in nonlinear media. However, Maxwell’s 
equations can be used to derive a nonlinear partial differential equation that these waves 
obey.



KRAMERS-KRONIG RELATIONS
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ε1(ω) and ε2(ω) are not independent quantities, being related one to the other by the 
integral relations, the so called Kramers-Kronig relations. These relations follow 
rigorously from the requirement of causality (i.e., there can be no effect before the 
cause) and apply to the real and imaginary part of whatever linear response function. 
Thus, the complex dielectric function  obeys the following relations
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where P stands for the principal part of the integral.

Also the Fresnel coefficient expresses the linear relation between incident 
and reflected electric field amplitudes which obey causality    a dispersion 
relation exists which connects its real and imaginary parts. Using the normal 
incidence reflectivity , the dispersion relation between the absolute value R
and the phase angle θ should be written as:

θier~r~ =

2r~R =



DIELECTRIC RESPONSE OF SOLIDS

amplitude, polarization and initial phase complex wavevector q = q1 + i q2

From the Maxwell’s eqs.            the wave equation (d’Alembert eq.)

e.m. wave propagating in a absorbing medium             
attenuation of wave amplitude + dephasing between field and medium  
response
(i.e.: A.C. circuits) 
usefulness of complex formalism.

A solution of the d’Alembert eq. Is a monochromatic plane wave (transverse, 
because  ∇⋅ E = 0):

Homogeneous, isotropic, non-magnetic, 
charge-free medium

Complex dielectric function
with q= 2πu/λ
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linear response
= ε1(ω,q)  + i ε2(ω,q)

dispersion  absorption
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By inserting the plane-wave complex solution in the Maxwell eqs., we obtain: 

ε (ω,q) ω2  = c2 q  q dispersion relation∼ ∼ ∼ ∼

The ω and q dependence of ε (ω,q) (or σ (ω,q)) describe the time and the spatial 
dispersion of the material, respectively. If  λ >> a (where a is a natural length in the 
medium, i.e. atomic dimension or lattice parameter) the space variation of ε can be 
neglected               ε (ω,q) =  ε (ω) (this is not possible at X-ray wavelengths).

Moreover, for  q  ≅ 0 (λ → ∞) the transverse and longitudinal response coincide, i.e.
the medium cannot distinguish between electric fields parallel or perpendicular to q

direct comparison between EELS spectroscopy and optical spectroscopy

We note that the wave dispersion relation does not imply in general a connection 
between time-dispersion and spatial-dispersion. In principle, it is possible to 
investigate separately the temporal response of a medium (and hence the time-
dispersion in ω) by subjecting it to a spatially uniform field that oscillates in time, or the 
spatial response (and hence the spatial dispersion in q) with a static field that is 
spatially periodic.



Una funzione d’onda è caratterizzata da due grandezze coniugate: 
frequenza e lunghezza d’onda. 

La relazione tra queste due grandezze dipende dalla natura della radiazione 

Frequenza e lunghezza d’onda sono altresì legate ad un’altra coppia di grandezze 
coniugate, energia e momento, che possono essere usate in sostituzione delle prime 
senza perdita di informazione.
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SPETTROSCOPIA (e spettroscopie)

Con il termine spettroscopia si intende una grande varietà di tecniche. Se pure il primo 
riferimento (anche dal punto di vista storico) va alla spettroscopia ottica e agli spettri di 
emissione o di assorbimento dei gas nel visibile e nel vicino ultravioletto, che per primi 
hanno evidenziato una struttura discreta dei livelli atomici, si parla oggigiorno di 
spettroscopia NMR così come di spettroscopia di neutroni.
Si intende come spettroscopia ogni tecnica che fornisce una grandezza 
risolta spettralmente, ovvero separando le sue componenti a diversa 
frequenza.
L’esempio più comune è dato dalla radiazione elettromagnetica e dalla sua 
decomposizione nei diversi colori del visibile, ma il discorso può essere esteso senza  
salti concettuali a tutte le frequenze e a tutte le grandezze per le quali è possibile 
definire una frequenza e/o una lunghezza d’onda.
Ogni grandezza in grado di propagarsi nello spazio (radiazione) e che 
possieda un carattere ondulatorio può essere impiegata per uno studio 
spettroscopico; nella fattispecie le stesse particelle (quali gli elettroni, i
neutroni o i muoni) che possono essere associate ad una funzione d’onda 
(di De Broglie).



Numeri d’onda

Energia  104        103        102        101         1 10-1       10-2      10-3    10-4      10-5   10-6

⇐ eV



donors

acceptors

Fig. 2 Hypothetical absorption spectrum for a typical doped semiconductor and related 
electronic optical transitions.

[ ] [ ]eVhν
241µm .=λ



OPTICAL SPECTRA
(R, T, SE, modulation spectroscopy, polarimetry)

complex dielectric function  

direct map of the elementary excitations in solids,
weighted with JDOS and transition probabilities

• optical gaps

• interband critical points

• effective masses m*

• vibrational structure

• effects of external perturbations on electronic states
(temperature, E, H, doping, structural and compositional disorder, size,...)

OPTICAL CHARACTERIZATION

( )ωε~



OPTICAL CHARACTERIZATION

• n(ω), k(ω), α(ω) optical functions

• N, m*, τ of free-carriers

• Spatial homogeneity (range 1-1000 nm) and thickness of films and multilayers

• Surfaces and interfaces
(roughness, planarity, anisotropy, traps, transition regions, oxides, overlayers,…)

• Compositional (impuritirs or dopants) and structural defects

• Structural disorder  (single-crystal, polycrystal, amorphous,…)

• Phase transitions (structural, magnetic, conductor-insulator, superconductors)

• Dynamical processes associated to the growth (in situ measurements)

• Radiation effects and damages (light, ion and electron beams)



ADVANTAGES OF OPTICAL SPECTROSCOPY

• It can be used in situ, during growth, fabrication or testing

• It does not require special environments, such as ultrahigh vacuum (UHV), 
and may even be useful in hostile environments

• It is nonintrusive and noncontact (         repeatability)

• It may achieve submicron lateral resolution (SNOM ≈ 20 nm)

• It can be used to acquire data in real time (i.e., as growth or processing takes place)

• It offers the possibility of depth probe (depending on α)

• It presents a wide array of techniques, capable of measuring different properties and 
parameters (e.g.:optical functions, electronic properties, crystal order, thickness, 

impurities,composition, surface and interface quality, etc.)

• It has high spectral resolution  ∆λ/ λ (≤10-3 vis-UV, ≤ 10-5 FFT- FIR)
and high sensitivity to spectral details (derivative techniques)

• It has high sensitivity to the long-range order (disorder), to the thickness (≤ 1 monolayer), 
to  impurities (< 1/109)



LIMITS OF OPTICAL SPECTROSCOPY

• It does not give information on the absolute positions
of the electron energy-levels

• It probes typically more than 10 nm in depth

average response in depth

no detailed information on electronic bonds,
surface structure, short-range effects

• It needs a “model” of the examined sample
(particularly relevant in films and multilayer structures)



Infrared spectroscopy studies vibrational frequencies of 
molecules.

The vibrations of molecules are what can help a 
researcher to determine a specific molecule. The most 
direct way to obtain the vibrational frequencies is with 
infrared radiation. A molecule that is said to be “IR 

active” has a change in its dipole moment as a result of the 
absorbance of infrared radiation.

A non-linear polyatomic molecule would use the 3N-6 
formula to determine the number of vibrational modes.

Water, H2O, would therefore have 3 vibrational modes.

Infrared Spectroscopy
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magnitudes of the arrows indicate that the stretch causes 
an increase in the dipole moment, pulling the oxygen away 

from the two hydrogen atoms. Although there is no 
change in the direction of the dipole moment, there is a 

change in its magnitude.
This vibrational mode is IR active and would be observed 

on a spectrum around 3650 cm-1.
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absorption intensity ratio (H2
16O) 

v1;v2;v3 = 0.07;1.47;1.00 

Main vibrations of water isotopologues 

Gas v1, cm-1 v2, cm-1 v3, cm-1

H2
16O 3657.05 1594.75 3755.93

H2
17O 3653.15 1591.32 3748.32

H2
18O 3649.69 1588.26 3741.57

HD16O 2723.68 1403.48 3707.47
D2

16O 2669.40 1178.38 2787.92
T2

16O 2233.9 995.37 2366.61



Moreover, 3 libration modes also exist.



In liquid water and ice the infrared and Raman 
spectra are far more complex than the vapor due to
vibrational overtones and combinations with 
librations (restricted rotations; i.e. rocking motions). 
These librations are due to the restrictions imposed by 
hydrogen bonding (minor L1 band 395.5 cm-1; major 
L2 band 686.3 cm-1

Variations in the environment around each liquid 
water molecule gives rise to considerable line 
broadening with vibration shifts in a hydrogen-bond-
donating water molecule being greater than in a 
hydrogen-bond accepting molecule but both acting in 
the same direction, and accumulating with the number 
of hydrogen bonds. 

The main stretching band in liquid water is shifted to 
a lower frequency (v3, 3490 cm-1 and v1, 3280 cm-1) 
and the bending frequency increased (v2, 1644 cm-1) 
by hydrogen bonding.



Assignment of the IR vibrational absorption spectrum of liquid water*

Wavelength cm-1 Assignment Wavelength cm-1 Assignment

0.2 mm 50 intermolecular 
bend 1470 nm 6800 av1 + bv3; a+b=2

55 µm 183.4 intermolecular 
stretch 1200 nm 8330 av1 + v2 + bv3; 

a+b=2

25 µm 395.5 L1, librations 970 nm 10310 av1 + bv3; a+b=3

15 µm 686.3 L2, librations 836 nm 11960 av1 + v2 + bv3; 
a+b=3

6.08 µm 1645 v2, bend 739 nm 13530 av1 + bv3; a+b=4

4.65 µm 2150 v2 + L2
a 660 nm 15150 av1 + v2 + bv3; 

a+b=4

3.05 µm 3277 v1, symmetric 
stretch 606 nm 16500 av1 + bv3; a+b=5 

[526]

2.87 µm 3490 v3, asymmetric 
stretch 514 nm 19460 av1 + bv3; a+b=6 

[526]

1900 nm 5260 av1 + v2 + bv3; 
a+b=1 Note that a and b are integers, ≥ 0 ms.
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If the wave is homogeneous, i.e. , it holds                       ,  where       is the unit 
vector parallel to       and then 

Thus the wave plane solution should be written as

n determines the phase velocity c/n of the wave in the medium
k measures the attenuation of the wave amplitude with the propagation distance inside the 
medium
The classical skin depth δ , defined as the distance at which the field amplitude drops of
1/e, is δ = c/(ω k)
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where      is the complex refractive index such that

n is the usual refractive index ; k is the extinction coefficient. Thus
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ABSORPTION COEFFICIENT
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deII α−= 0

I0 =  incident wave intensity.

α is usually measured in cm-1 (n and k, instead, are dimensionless) . α-1 is the 
penetration depth.

αd = optical density (it reflects both the physical chemical properties and the   
geometry of the medium)

The exponential attenuation of I after a propagating distance d accounts for the 
phenomenological Lambert-Beer law :

An additional important macroscopic quantity of the medium is the absorption 
coefficient α , which describes the relative decrease in the wave intensity I with 
unit distance (in the propagation direction, i.e.       // dr). Since the wave intensity
(i.e. the power which is incident on the unit area perpendicular to  ) is 
from the plane-wave solution it follows

qu
qu 2E2 /cnI =



from Maxwell equations:

refractive index

{

OPTICAL MEASUREMENTS OF SILICIDES

The optical response of a material is related to its dielectric function
 

E transm (x, ω )=E tr e
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REFLECTION AND TRANSMISSION

At the interface between two media, the reflected (Ir) and transmitted (It) 
wave intensities relative to the incident one (I0) are called reflectivity R and 
transmittivity T. At normal incidence they are given by

Let us consider a sample of material with and thickness d, immersed in 
air (   = 1)  as shown in Figure 1. Coming from air, the near-normally 
incident beam is split into reflected and transmitted fractions (as determined 
by R and T) at each interface, giving rise to secondary beams: by summing 
up all the multiple-reflected and multiple-transmitted elements, which  
account also for light absorption along the thickness d, we obtain the total 
intensity reflected from the front surface:
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R + T = 1

(energy conservation)



Surface and Interface Effects 
rtot= r12+ 

  +t12r23t21+t12r23r21r23t21+ ... 
  +t12t23r34t32t21+ t12t23r34 r32 r43t32t21+ ... 
  +t12t23t34r45t43t32t21+ t12t23t34r45r43r45t43t32t21+ ... 
  + ... 
  + t12t23r34 r32 t34r45r43r45t43t32t21+ ... 
 
ttot= t12t23t34t45+ 

  +t12r23r21t23t34t45+t12r23r21r23r21t23t34t45+ ... 
  +t12t23r34r32t34t45+ t12t23r34r32r34r32t34t45+ ... 
  +t12t23t34r45r43t45+ t12t23t34r45r43r45r43t45+ ... 
  + ... 
  + t12t23r34 r32 t34r45r43t45+ ... 
 

Multiple reflection is a common behaviour of thin (transparent) films and concerns: 
⇒ film deposition 
⇒ coatings 

⇒ oxide layers 
⇒ multilayered systems 

 
In multireflection, interference has to be considered and one can observe interference fringes. 
Important parameters are:  thickness     homogeneity of the film     

parallelism and   smoothness of interfaces 
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Interference and Fourier Transform 
Spectroscopy

Coherence and Interference 

Interferometry and Interferograms

Fourier components 
• time-dependence of a signal

• resolution

Fourier Transform Spectroscopy
• Advantages

• Spectrometers

Conclusions



Phase and Amplitude
Any oscillating quantity  A(t) = Aocos (ωt-k.r+φ) (for 
electro-magnetic waves the electric field vector and the 
magnetic field vector) is characterized by :

the oscillation frequency ω

the wavelength, λ=2π/|k| =2π v/ω

Once the frequency has been fixed (monochromatic wave) 
and the velocity of propagation “v” is given

the amplitude  = the maximum value  Ao

the phase of the wave φ 

Of course, the phase definition  related to a reference e.g. a 
second component of the same beam



The two wave components (A1,A2) recombine at 
the exit of the interferometer and sum their 
instantaneous amplitudes: the eventual phase delay 
of one wave with respect to the other must be 
taken into account.

Let us consider a wave travelling from a source S to 
a beam splitter B

S
B

A1

A2

MIRROR 1

MIRROR 2



 

 

=

=

Phase modulation : Interferogram
• The final amplitude of the 

out-coming wave is then 
modulated by the relative 
phase shift of the two wave 
components.

• When the phase shift (or the 
delay) of one of the compo-
nents is changed (e.g.: by 
changing the optical path, 
moving a mirror or intro-
ducing a different medium) 
the amplitude, and then the 
intensity of the outcoming 
wave is correspondingly 
changed.

∆φ

∆A



Interferogram
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• Each component with frequency ω and 
wavevector k = ω/c is then modulated by the 
spatial delay ∆z;

• The whole beam can be described by the sum (the 
integral) of all the components;

• By considering the intensity of each component 
(and of the whole beam) one is obtaining a sum of 
a constant term and a modulated one.

Interferogram



Interferogram
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When the delay ∆z is described as a continuous, linear 
function of time, one can show that the resulting intensity 
is also time dependent and corresponds to the Fourier 
transform of its spectral function.
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• The function of time (interferogram) obtained is 
different depending on the spectral content of the 
light beam:

• A single frequency beam will be modulated as a 
continuous cosine function;

• A spectrum extended over a frequency region will 
approximate a delta function (pinned at ∆z=0) as 
better as the frequency region is larger.

Interferogram



Interferogram and resolution
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How is Working a Fourier 
Transform Spectrometer



Main features of a Fourier 
Transform Spectrometer

Besides the necessary lamp and detector, the key features of a 
FTIR instrument are:

• An interpherometer moving mirror whose position can be 
controlled to a high accuracy (usually such a control is 
obtained with the help of a laser);

• A sampling and acquisition system which allows to obtain 
the correct time dependence of the interferogram;

• An analysis system which can perform the FFT (fast 
Fourier Transformations) and correctly evaluate the 
corrections (intensity, phase and noise effects introduced 
by the experimental setup).



Main features of a Fourier 
Transform Spectrometer

• The interference signal of a laser beam colinear to the light 
path in the interferometer is used to control the position of 
the moving mirror with a precision of less than 1 nm;

• The same interference fringes of the laser are used for the 
sampling of the data: according to the Nyquist theorem, one 
must sample the data at a frequency (at least) double of the 
maximum frequency of phase modulation;

• An usual PC is nowadays enough to perform the mathemati-
cal data treatment (and also to control the whole experiment)



Advantages of FTIR Spectroscopy
The so-called Jaquinot advantage: there is no need of slits 
which limit the throughput of radiation, so one can have a 
large signal without affecting the resolution;

The Fellget (multiplex) advantage: the whole spectrum is 
obtained simultaneously for all the frequencies from a single 
interpherogram;

Because of the two features above, it is possible to obtain 
instruments with a much higher resolving power than in 
dispersive instruments, even when the beam energy is low;

Since mirror mouvements can be very fast (and/or very 
precise), time resolution is easily implemented.







Interferogram and resolution
Problem: it is obviously impossible to measure an 
interferogram developing in time from -∞ to ∞. 

What is then the effect of taking a limited portion of 
signal (let us say from t=-τ to t=τ)?

Answer: there is a kind of inverse symmetry between the two 
conjugated spaces. As shown in the pictures above, inasmuch 
a structure is narrow on one side, as much its transformed 
counterpart is extended.

This also means that we can only distinguish among different 
spectral components close one to the other if the correspon-
ding interferogram is wide enough.

Resolution depends on the length of the interferogram



As an example let us consider the interferogram obtained by 
the sum of two components at frequency ω1 and ω2, 
respectively. It will consist of the product of two cosine 
function: one of frequency [v(ω1+ω2)/2c] and the other one of 
frequency [v(ω1-ω2)/2c]. 
The first one is a rapidly varying function corresponding to 
the interferogram of a single component spectrum with an 
average frequency between ω1 and ω2. 
In order to discriminate between ω1 and ω2 one has to wait a 
time corresponding to the period of the second, slowly 
varying function, which bring the information about the 
difference ω1- ω2.

Interferogram and resolution

+ =

| ….  ∆t = 4πc/v(ω1-ω2) … |



Resolution and Apodization
The truncation of the interferogram at the limits –τ and +τ can be viewed 
as the multiplication of the interferogram by a boxcar function having the 
same limits.
According to the convolution theorem and considering that the Fourier 
transform of a boxcar function is the sinc function, the resulting Fourier 
transform of the considered interferogram is the convolution of the Fourier 
transform of the whole spectrum with the sinc function with argument 
(πt/τ).
Since the sinc function introduces some lobes in the spectra of narrow 
lines, it is sometimes preferred to multiply the interferogram by a function 
which reduces the intensity to zero at the limits –τ and +τ. This can be a 
triangular function, or an exponential decay, or a combination of function. 
The effect is the reduction of the lobes, payed by a loss of resolution.
Such an operation is called Apodization.



Phase correction
• All the components of an interferometer introduce, in general, both an 

intensity correction and a phase contribution to the interference beam. 
The amplitude (intensity) effects are similar to the ones introduced by 
any optical device in a spectroscopic experiment, and call for the need 
of a reference measurement.

• The phase effects are peculiar of the use of an interferometer. In 
general, the phase shift introduced by the optics (mirrors, beam splitter, 
retardation plates) is a function of the wavelenght and of the 
experimental geometry (since one has to do with several different 
optical paths when the light beam is not perfectly collimated) and is 
adding to the modulation shift intentionally created in the experiment.

• The effect of such a situation is that each component is added to form 
the interferogram with a different phase shift; in other words, both cos-
(symmetrical) and sin- (antisymmetrical) functions contribute to the 
interferogram. It means that both real- and imaginary- components are 
obtained after inverse FT. 



• Since the experiment result is usually an intensity value, just the power 
spectrum is actually interesting. Nevertheless, the calculation of the phase 
correction is a necessary step in the process. 

• Phase spectrum is, in general, a slowly varying function of the frequency; 
then a low resolution evaluation is enough to have a good correction. 
Such a spectrum can be interpolated in order to be used for the correction 
of a high resolution spectrum.

• This way of proceeding has two advantages:
A more efficient averaging of the noise in the spectrum can be achieved 
using         with respect to

The possibility of dealing with an interferogram not symmetrically 
displaced around its maximum (which is the ordinary case in the 
experiments)

Phase correction
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DFFT
Discrete Fast Fourier Transform

• The need of a discrete sampling of the 
interferogram data allows the use of a 
computer and fast algoritmes to make the 
transformation.

• Nevertheless the discrete character of the 
data introduces some further problems and 
requires some caution in producing and 
evaluating the results.



• The sampling theorem says that the sampling frequency 
must be the double of the largest frequency νmax of the 
signal. That means that, in order to avoid spurious 
contributions (aliasing), one needs some kind of low pass 
filter (optical or electrical) which cut the spectrum above 
νmax .

• Due to the discrete character of the sum, the Fourier 
transformed function results to be a symmetrical and 
periodic function in the frequency space, with period 
1/2νmax . (this is way a component with frequency larger 
than νmax should be folded and superimposed to the lower 
frequencies, leading to a wrong spectrum)

DFFT
Aliasing
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