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Understanding FT-IR Data Processing 

Part 1: Data Acquisition and Fourier Transformation 
1 Introduction 

Although Infrared spectroscopy is one of the 
most powerful tools available to the analytical 
chemist and is routinely used in research and 
application labs and for process control, the 
most advanced form of IR-spectroscopy, 
Fourier Transform Infrared Spectroscopy 
(FT-IR), still holds some secrets for the 
chemist who is trained to work with 
conventional grating instruments. One 
reason is surely that the generation of the 
spectral trace is not straightforwardly 
controlled by setting appropriate knobs 
controlling slit widths, scanning speed, etc. 
but involves a certain amount of 
mathematical manipulations such as Fourier 
transformation, phase correction, and 
apodization, which may introduce a barrier to 
understanding the FT-IR technique. Despite 
this difficulty, moderately and low priced FT-
IR instruments are now entering even routine 
labs, because of their clear advantages 
compared to grating spectrometers. Even in 
lower-??ed FT-IR spectrometers, a 
laboratory-o« dedicated computer is the most 
important component apart from the optics. 
As the quality of its software directly de-
termines the accuracy of the spectra, it is 
recommended that the user be familiar with 
the principles of FT-IR data collection and 
manipulation. Unfortunately, there still 
seems to be a lack of literature on FT-IR at 
an introductory level. Therefore, this series 
of articles attempts to compile the essential 
facts in a, hopefully, lucid way without too 
many mathematical and technical details and 
thus provide an insight into the interrelation 
between FT-IR hardware, the data 
manipulations involved, and the final 
spectrum. 

This is the« first of a series of three articles, describing the data acquisition and 
mathematics performed by the minicomputer Inside an FT-IR spectrometer. 
Special emphasis is placed on operations and artifacts relating to the Fourier 
transformation and on methods dealing directly with the interferogram. Part 1 
covers the measurement process and the conversion of the raw data (the 
Interferogram) Into a spectrum. 
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Figure 1: A) Schematics of a Michelson Interferometer. S: source. D: detector. M1: 
fixed mirror. M2: movable mirror. X: mirror displacement. B) Signal measured by 
detector D. This Is the Interferogram. C) Interference pattern of a laser source. Its 
zero crossings define the positions where the Interferogram Is sampled (dashed 
lines). 



  

2 Raw Data Generation 

The essential piece of optical hardware in a 
FT-IR spectrometer is the interferometer. 
The basic scheme of an idealized 
Michelson interferometer is shown in Figure 
1. 

Infrared light emitted by a source (Globar, 
metal wire, Nernst bar...) is directed to a 
device called the beam splitter, because it 
ideally allows half of the light to pass 
through while it reflects the other half. 

The reflected part of the beam travels to the 
fixed mirror M1 through a distance L, is 
reflected there and hits the beam splitter 
again after a total path length of 2 L The 
same happens to the transmitted part of the 
beam. However, as the reflecting mirror M2 
for this interferometer arm is not fixed at the 
same position L but can be moved very 
precisely back and forth around L by a 
distance x, the total path length of this beam 
is accordingly 2* (L + x). Thus when the two 
halves of the beam recombine again on the 
beam splitter they exhibit a path length dif-
ference or optical retardation of 2 * x, /. i.e. 
the partial beams are spatially coherent and 
will interfere when they recombine. 

The beam leaving the interferometer is passed 
through the sample compartment and is finally 
focused on the detector D. The quantity actually 
measured by the detector is thus the intensity / 
(x) of the combined IR beams as a function of 
the moving mirror displacement x, the so-called 
inter-ferogram (Figure 18). 

The interference pattern as seen by the de-
tector is shown in Figure 2A for the case of a 
single, sharp spectral line. The inter-
ferometer produces and recombines two 
wave trains with a relative phase difference, 
depending on the mirror displacement. 
These partial waves interfere constructively, 
yielding maximum detector signal, if their 
optical retardation is an exact multiple of the 
wavelength A, /. e. if 

2 * x  - n* l(n = 0, 1,2....). (1) 

Minimum detector signal and destructive 
interference occur if 2 * x is an odd multiple 
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of   A/2.   The   complete   dependence   of / 
(x) on x is given by a cosine function: 

 
(2) 

where we have introduced the wave-
number v « 1/A, which is more common in 
FT-IR spectroscopy, and S (v) is the inten-
sity of the monochromatic line located at 
wavenumber v. 

Equation (2) is extremely useful for practical 
measurements, because it allows very 
precise tracking of the movable mirror. In 
fact, all modem FT-IR spectrometers use 
the interference pattern of the 
monochromatic light of a He-Ne laser to 
control the change in optical path difference. 
This is the reason why we included the 
interference pattern of the He-Ne laser in 
Figure 1C. This demonstrates how the IR 
interferogram is digitized precisely at the 
zero crossings of the laser interferogram. 
The accuracy of the sample spacing ∆x 
between two zero crossings is solely 
determined by the precision of the laser 
wavelength itself. As the sample spacing ∆ν 
in the spectrum is inversely proportional to 
∆x, the error in Dv is of the same order as in 
∆x. Thus, FT-IR spectrometers have a built-
in wavenumber calibration of high precision 
(practically about 0.01 cm"1). This advantage 
is known as the Connes advantage. 

3 Advantages of FT-IR 

Besides its high wavenumber accuracy, FT-
IR has other features which make it superior 
to conventional IR. 

The so-called Jacquinot- or throughput ad-
vantage arises from the fact that the circular 
apertures used in FT-IR spectrometers have 
a larger area than the linear slits used in 
grating spectrometers, thus enabling higher 
throughput of radiation. 

In conventional spectrometers the spec-
trum S (r) is measured directly by recording 
the intensity at different monochromator 
settings v, one v after the other. In FT-IR, 
all frequencies emanating from the IR 
source impinge simultaneously on the 
detector. This accounts for the so-called 
multiplex- or Fellget advantage. 

The measuring time in FT-IR is the time 
needed to move mirror M2 over a distance 
proportional to the desired resolution. As 

the mirror can be moved very fast, complete 
spectra can be measured in fractions of a 
second. This is essential, e.g. in the 
coupling of FT-IR to capillary GC, where a 
time resolution of 10 - 20 spectra per sec-
ond at a resolution of 8 cm'1 is often ne-
cessary [1]. 

Finally, the Fellget- and Jacquinot ad-
vantages permit construction of interfer-
ometers having much higher resolving 
power than dispersive instruments. 

Further advantages can be found in the IR 
literature, e.g. in the book by Bell [2]. 

4 Fourier Transformation 

Data acquisition yields the digitized inter-
ferogram l (x), which must be convened into a 
spectrum by means of a mathematical 
operation called Fourier transformation (FT). 
Generally, the FT determines the frequency 
components making up a continuous 
waveform. However, if the waveform (the 
interferogram) is sampled and consists of N 
discrete, equidistant points, one has to use 
the discrete version of the FT, /. e. discrete 
FT (DFT): 

The DFT expresses a given function as a 
sum of sine and cosine functions. The re-
sulting new function S (k • ∆ν} then consist of 
the coefficients (called the Fourier 
coefficients) necessary for such a develop-
ment. Alternatively, if the set S (k - ∆ν) of 
Fourier coefficients is known, one can 
easily reconstruct the interferogram / (n - 
∆x) by combining all cosines and sines 
multiplied by their Fourier coefficients S (k • 
∆ν) and dividing the whole sum by the 
number of points N. This is stated by the 
formula for the inverse DFT (IDFT>; 
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where the continuous variables x, v have 
been replaced by n • ∆x and k - ∆ν, respec-
tively. The spacing ∆ν in the spectrum is 
related to ∆x by 

 



  

amplitude. This illustrates the need for 
ADC's of high dynamic range in FT-IR 
measurements. Typically, FT-IR spec-
trometers are equipped with 15- or 16-bit 
ADC's. 

For n = 0, the exponential in (5) is equal to 
unity. For this case, expression (5) states, 
that the intensity / (0) measured at the 
interferogram center-burst is equal to the 
sum over all N spectral intensities divided 
by N. This means the height of the center 
burst is a measure of the average spectral 
intensity. 

In practice, eq. (3) is seldom used directly 
because it is highly redundant. Instead a 
number of so-called fast Fourier transforms 
(FTTfs) are in use, the most common of 
which is the Cooley-Tukey algorithm. The 
aim of these FTTs is to reduce the number 
of complex multiplications and sine- and 
cosine calculations appreciably, leading to 
a substantial saving of computer time. The 
(small) price paid for the speed is that the 
number of interferogram points N cannot 
be chosen at will, but depends on the 
algorithm. In the case of the Cooley-Tukey 
algorithm, which is used by most FT-IR 
manufacturers with slight modifications, N 
must be a power of two. For this reason and 
from relation (4) it follows that spectra taken 
with laser-controlled FT-IR spectrometers 
will show a sample spacing of ∆ν = m * 
laser wavenumber/2* *N. 

  

The summation (5) is best illustrated in the 
simple case of a spectrum with one or two 
monochromatic lines, as shown in Figures 
2A and 2B. For a limited number of func-
tions like the Lorentzian in Figure 2C, the 
corresponding FT is known analytically and 
can be looked up from an integral table. 
However, in the general case of measured 
data, the DFT and IDFTmusf be calculated 
numerically by a computer. 

Although the precise shape of a spectrum 
cannot be determined from the interfer-
ogram without a computer, it may never-
theless be helpful to know two simple trad-
Ing rules for an approximate description of 
the correspondence between / (n - ∆x) and 
S(k ∆ν). 

From Figure 2C we can, e.g., extract the 
general qualitative rule that a finite spectral 
line width (as is always present for real 
samples) is due to damping in the 
interferogram: The broader the line the 
stronger the damping. 

Comparing the widths at half height (WHH) 
of / (n - ∆x) and S (k - ∆ν),  reveals another 
related rule: The WHH's of a 'hump-like' 
function and its FT are inversely 
proportional. This rule explains why in 
Figure 2D the Jnterferogram due to a broad 
band source shows a very sharp peak 
around the zero path difference position x - 
0, while the wings of the interferogram, 
which contain most of the useful spectral 
information, have a very low 

5 Final Transmittance Spectrum 

To obtain a transmittance spectrum, the 
three steps shown in Figures 3 A, B, C are 
necessary (this example was taken from a 
GCrun): 
• an interferogram measured without 

sample in the optical path is Fourier 
transformed and yields the so-called 
single channel reference spectrum R 
(ν)of  Fig. 3A. 

• an interferogram with a sample in the 
optical path is measured and Fourier 
transformed. This yields the so-called 
single channel sample spectrum S(ν) of 
Fig. 3B. S(v) looks similar to R(v) but has 
less intensity at those wav«numbers 
where the sample absorbs. 

• The final transmittance spectrum T(v) is 
defined as the ratio T ( ν )  • S ( ν )  I R (ν ). This 
is shown in Fig. 3C. Once  the transmittance  
spectrum  has been obtained, further data 
processing resembles that of digitized 
spectra from dispersive instruments. 
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Figure 2: Examples of spectra (on the left) and their corresponding interferograms n 
the right). A) One monochromatic line. B) Two monochromatic lines. C) Lorentzian 
line. D) Broadband spectrum of polychromatic source. 
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: A) Single channel reference spectrum measured through an empty sample compartment. B) Single channel spectrum of 
absorbing sample. C) Transmlttance spectrum equal to Fig. 3B divided by Fig. 3A. 
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Figure 5: A) First 2048 points of an Interferogram consisting of a total of 8196 points. 
Signal In the wings Is amplified 100 times. B) FT of first 512 points of inter-ferogram 
In Fig. 5a, corresponding to a resolution of 32 cm. C) FT of ail 8196 points of 
Interferogram In Fig. 5a, corresponding to a resolution of 2 cm. 

Figure 4: Two closely spaced spectral 
lines at distance d (left) produce repea-
tlve patterns at distance 1/d In the 
Interferogram (right). 
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6 Resolution In FT-IR 

Figure 4 shows the interferogram corres-
ponding to two sharp lines separated by a 
wavenumber distance d. Due to the sep-
aration d in the spectrum, the interferogram 
shows periodic modulation patterns repeated 
after a path length difference 1/rf. The closer 
the spectral lines are, the greater the 
distance between the repeated patterns. 
This illustrates the so-called Raleigh 
criterion, which states that, in order to resolve 
two spectral lines separated by a distance d 
one has to measure the interferogram up to a 
path length of at least Md. 

For a practical measurement, which was 
done on a Bruker IFS-88 using a broad 
band MCT detector, the influence of in-
creasing the interferogram path length on 
the resolution is shown in Figures 5A, B, C. 
The interferogram in Figure 5A represents 
the first 2048 points from a total of 8196. 
Figure 5B was obtained by transforming 
only the first 512 interferogram points, 
which corresponds to a resolution of 32 cm-

1. Figure 5C exhibits the full 8196 point 
transform. It is clearly seen that many more 
spectral features are resolved in the case of 
a longer optical path. 

7 Zero Filling 
I 

It should be noted that DFT only approx-
imates the continuous FT, although it is a 
very good approximation if used with care. 
Blind use of eq. (3), however, can lead to 
three well-known spectral artifacts: the 
picket-fence effect, aliasing, and leakage. 

The picket-fence effect becomes evident 
when the interferogram contains fre-
quencies which do not coincide with the 
frequency sample points k * A v. If, in the 
worst case, a frequency component lies 
exactly halfway between two sample points, 
an erroneous signal reduction by 36 % can 
occur: one seems to be viewing the true 
spectrum through a picket-fence, thereby 
clipping those spectral contributions lying 
'behind the pickets', i.e. between the 
sampling positions k * A v. In practice, the 
problem is less extreme than stated above if 
the spectral components are broad enough 
to be spread over several sampling 
positions. 

 

Figure 6: Picket-fence effect in bands 
due to water vapor. Top: no zero filling, 
bands look badly clipped. Bottom: 
spectrum zero filled using a ZFF of 8. 

The picket-fence effect can be overcome by 
adding zeros to the end of the interferogram 
before DFT is performed, thereby increasing 
the number of points per wave number in 
the spectrum. Thus, zero filling the 
interferogram has the effect of interpolating 
the spectrum, reducing the error. As a rule of 
thumb, one should al -> ways at least double 
the original interferogram size for practical 
measurements 

by zero filling it, i.e. one should choose a 
zero filling factor (ZFF) of two. In those 
cases, however, where the expected line 
width is similar to the spectral sample 
spacing (as e.g. in case of gas-phase 
spectra), a ZFF value of up to 8 may be ap-
propriate. 

The influence of zero filling on the ap-
pearance of water vapor bands is dem-
onstrated in Figure 6. At the top, a spectrum 
with no zero filling is shown. The spectrum 
at the bottom is zero filled using a ZFF of 8. 
While the lines of the upper spectrum look 
badly clipped, the lines are smooth in zero 
filled spectrum. 

It should be noted, that zero filling does" 
not introduce any errors because the in 
strumental line shape is not changed. It is 
therefore superior to polynomial interpola 
tion procedures working in the spectral do 
main. ~~ 

Aliasing, leakage, apodization, and phase 
correction will be dealt with in the following 
installments. 
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