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Introduction

m  The objective:
Construction of new efficient quantum algorithms
for combinatorial (algebraic, topological) problems

m  The general context:
Quantum Information Theory in a generalized Q-circuit
setting (Spin Network Q-automata, discretized version
of Topological Q-computation)

m The results:
Efficient quantum algorithms for approximating
any observable of Chern-Simons Topological Quantum
Field Theory, i.e. (colored) Jones polynomials for knots
and combinatorial invariants of 3-manifolds
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Knots

Knot theory is the branch of
topology concerning with the
properties of knots.

The most important problem in
knot theory is the
classification of knots:
given two knots determine
whether they are topologically
equivalent or not.
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More knots

the “non-alternating the "figure 8 knot"
12-725 knot®
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Knot diagram
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The embedding of S! into R?.
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Algorithmic problems in knot theory,e.q.
detecting the unknot

“Wheeler
Machine”
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Unknotting Problem

m Instance : A knot diagram D
m Question : Does D a represents the ‘trivial’ knot?

m This problem is in NP (the class of decision
problems that can be checked in polynomial
time on a deterministic Turing machine)

m Haken’s algorithm (1961) runs in exp- time.

m Finding a Poly-time algorithm for an NP
(complete) problem would imply P=NP (!)



" S
Combinatorics of knot diagrams

m Reidemeister moves : Combinatorial
transformations on the knot diagram that don't
change the equivalence class of the knot.

m A knot diagram is unknotted if and only if there
exists a finite sequence of Reidemeister moves
that converts it to the trivial knot diagram.

m Recursive procedure applied to subsets of the
diagram: exp-growth in terms of the n° of
cros§ings (the measure of the ‘size’ of the
iInput
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The Jones polynomial

A knot polynomial is a knot ‘invariant’ in the form of
a polynomial whose coefficients encode for some of
the topological properties of classes of knot diagrams.

The Jones polynomial can distinguish mirror images of
knots not detected by other knot invariants

JP for
the trefoil knot

] (q) — q—1+q—2_q—4

Laurent polynomial in one
formal variable g
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The original definition of the Jones polynomial (*)
IS given in terms of
the trace of a matrix representation of the
braid group into a Temperley-Lieb algebra TL(q)

Such an operation takes care of _invariance of the
knot diagram(s) under Reidemeister moves, /.e.
J(q) depends only on intrinsic topological features

(in @ quantum computation framework:
search for unitary representations )

(*) V.F.R. Jones, Bull. Amer. Math. Soc. 129 (1985), 103-112.



" N
Braid group

The braid group on n strands, Bn, is a finitely
presented group on (n-1) generators with a simple
geometrical realization (weaving patterns)

Presentation of Bn :

O1y. ooy On—1 | 0i05 = 0;0; ([i—]| = 2), 0:0i410; = 0i410i0:41 (i = 1,2

(Second relation:
algebraic Yang-Baxter equation)
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The braid group: generators

Generators & relations
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The braid group. relations
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The braid group: relations

0010 = 0410041 Ti=1
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Composition law

The braid group 5,

By, P Py By B
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Elements of the braid group: weaving patterns
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Q{LJ Q(l) Q({ Q“} Q[':]
The braid group mulftiplication: composition of two
weaving patterns
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Identity & inverse braid

PP P BB

L B N
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Elements of the braid group: the identity pattern \J/\ P
‘::'ﬂ'“"-. r\l I
2

Elements of the braid group: the inverse weaving
pattern




" S
From knots to braids

Any given link L (collection of knots)

/\2/ ﬂ 1
1aY _/m

J1

can always be seen as the closure of a braid (Alexander theorem)
Any such transformation can be done efficiently
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TDhgz in a minimal projection

— 1 — 1 — 1 — 2
o5 "oyozo; "oy Toz)lo; Yoz

Rearranged

Construction of a closed braid from a knot diagram.

Figure from Interactive Topological Drawing (1928) by R. G. Scharein
W i s mat huecadknotplot”
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Computational complexity of
Jones polynomial J(q)

= We know that there exist no efficient classical algorithms
for its evaluation, more precisely it is a

#P-hard problem

= Can we construct an efficient (employing Polynomially-
bounded resources) quantum algorithm?

= What about ‘approximate’ calculation?

Jaeger, Vertigan and Welsh, On the computational complexity of the Jones and
Tutte Polynomials, Math. Proc. Cambridge Phil. Soc. 108(1990), 35-53
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Qd #P-hard problem: ‘hard’" means that all problems in #P
can be polynomially reduced to it.

Q #P is the complexity class of counting problems associated
with ‘decision’ problems belonging to NP. Tipically:

(NP) Is there a solution to a given algorithmic problem? (yes/no)
(#P) How many solutions are there?

EX. Existence of Hamiltonian circuit(s) in graphs (NP-c & #P)

A A #P problem is at least as hard as the associated NP problem

A Then efficiently solving a #P-hard problem would imply
efficient solution to the corresponding NP-complete problem,
and so we could prove P=NP
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A It is known that a few #P-hard problems admit

efficient classical algorithms for their approximate solutions
(this is not the case for Jones polynomial)

 Evaluating (generalizations of the) Jones polynomial of any
knot can be done efficiently with a quantum computer if we
search for an additive approximation of its value when
the formal variable is q=2ni/k (K=positive nteger)

A In fact such approximate evaluation of (extended)
Jones polynomials is the first known BQP-complete
problem ever solved

D Aharonov, V Jones, Z Landau quant-ph/0511096
S Garnerone, A Marzuoli, M Rasetti quant-ph 0601169 [QIC 7 (2007) 479]
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< BQP = Bounded error Quantum Polynomial time:
the class of decision problems solvable by a quantum
computer in polynomial time with an error probability < V4

% These are the problems that a quantum computer can
‘reasonably’ solve

“ A BQP-complete problem is important to compare quantum
and classical models of computation as well as complexity
classes of algorithmic problems

Bordewich, Freedman, Lovasz, Welsh, Approximate counting and quantum
Computation, Comb. Probab. Comput. 14(2005), 737-754



= An additive approximation of J (L, q) (L:link) is a
random variable X such that, for each small d > 0, the
value X is accepted as the result of the (quantum)
computation with

Prob{ |J(L,q)—X| =0}=3a

m In case g= k-th root of unity the approximate value X of
J (L, q) can be evaluated " efficiently’, namely the
running time of the quantum algorithms (AJL & GMR) is
bounded from above by

d[ poly (N, k) ]
N= # of strands of the associated braid
K= # of crossings of the link diagram
m (GMR): ‘colored’ Jones polynomial J (L, g; j1, j2,...,JN)
and the result holds for each choice of (j1, j2,...,jN)
(see below)
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Computing machines

H

Turing machine (Quantum)
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% Classical physics and quantum mechanics support several
different implementations of the Turing machine model of
computation (abstract universal model)

< These reference models are equivalent to Boolean circuits

< Complexity classes of algorithmic problems are
defined with respect to such universal models:

< P w.r.t. classical Turing machine
< BPQ w.r.t. guantum circuits based on qubits and a set
of elementary unitary gates
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Quantum computing

What is a quantum algorithm?

A computational procedure which can be
performed on a quantum system

measurement

|0}
— Un Uk ¥
IngredientS: measurement
0}
ng 7 T h
m Superposition L L :
= Entanglement o : ' measurement
; ) . r 4’
m Unitary o Us 1 Un
evolution
|1} U 25 Ero1(-1)%|7)




" JE
“* When dealing with combinatorial problems
it may be useful to switch to automaton
architectures

“* A finite-states & discrete-time quantum
automaton is a graph-like structure where

«* Nodes encode for computational finite-
dimensional Hilbert spaces

“* Links between contiguous nodes represent
admissible unitary evolutions (each
corresponding to 1 computational step)
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‘Spin Network’ quantum simulator

Nodes: Hilbert spaces of N binary coupled SU(2) angular momenta
Edges: unitary operations (Racah-Wigner 6j-symbols)

A. Marzuoli and M. Rasetti
Ann. Phys. 318 (2005) 345
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Spin Network quantum automata

The spin network simulator scheme relies on the
Racah-Wigner tensor algebra of the group SU(2).

It can be thought of as non-Boolean version of the quantum
circuit model, with unitary gates expressed by recoupling
transformations (3nj symbols) among inequivalent binary
coupling scheme of N SU(2)-angular momenta

(not just 2 spins).

e connects circuit schemes for quantum computation with
Topological Quantum Field Theory;

e its combinatorial properties are related to SU(2) ‘state sums’
used in low-dimensional quantum gravity models.



Spin Network Quantum Automata (SNQA) are families of

finite-states quantum machines generated by considering the
tensor algebra of the deformation of the universal

enveloping algebra of SU(2), SU(2)g, where

q=2Ni/k
k=3 (integer)
SNQA process linearly
unitary representations of the braid broup
1-step unitary transformations:

e U (0i) (elementary braiding operator associated with each
generator of the braid group)
e U (9-6j) (g-Racah transform implemented by the
deformed version of the SU(2) 6j-symbol)
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From QSN automata to standard
quantum computation

m Recall that complexity classes of algorithms are
defined within the proper (classical, quantum)

universal model of computation

m Given a quantum automaton scheme it is necessary to
prove that each computational step can be efficiently
performed by a (suitable designed) standard Q-circuit

m The SNQA states can be encoded efficiently into many-

qubits states and the unitaries U (oi) & U (g-6j ) can
be polynomially compiled by quantum circuits

(cfr. final slides)
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Knot invariants in Quantum Field Theory

Unitary representations of the braid group &
realizations of Jones polynomials as ‘traces’ of
associated matrix representations

arise naturally in the context of

Chern-Simons Topological Quantum
Field Theory (CS-TQFT)

E. Witten, Quantum field theory and the Jones polynomial,
Comm. In Math. Phys. 121(1989), 351-399



Chern-Simons TQFT

3-dimensional ‘topological’ quantum field theory:
the quantum partition functional and correlation functions

do not depend on the space-time metric and then must be
related to topological invariants

K 2
Classical action S =—J-Tr(A/\dA+—A/\ A A Aj
4 v 3

k is the (integer) coupling constant

A is a connection one-form, valued in the Lie algebra of
the group G'(=SU(2)), the gauge group

M is a 3-dimensional closed manifold (e.g. the 3-sphere)
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Observables in CS-TQFT

Wilson loop operators associates with closed,
‘*knotted’ curves (P: operator ordering)

W(C;p)="TrP exp (zjé Al (;C)T(ap)dx”)
o

P is a representation of the gauge group G;

Cis a knot (or link);

T are the generators of G in representation p;

A is a connection on the principal fibre bundle P(M,G)

If G=SU(2) the expectation values of Wilson operators
are (colored) Jones polynomial (suitable normalized)
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Kaul unitary representation

CS-TQFT is exactly solvable for each fixed value of
the coupling constant K.
Procedure (outline)

» give a knot present it as the ‘plat’ closure of a braid
embedded in the 3-sphere
» cut the braid with horizontal lines in such a way
that between two lines there is at most one crossing
» use Kaul unitary representation of the braid group to
get the colored Jones invariant as v.e.v.
(vacuum expectation value) of its Wilson operator

R. Kaul, Chern-Simons theory, colored-oriented braids and links invariants,
Comm. In Math.Phys. 162(1994), 289
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Kaul unitary
representation
of the group of

oriented colored
braids

J1 /3272430
label irreps
of SU(2)q
(colors)

The plat-closure of a
braid inside a 3-manifold

The standard closure of a braid
pattern inside a 3-manifold




Generators of the braid group are mapped into

“elementary” braiding operators
0, —>U(a)

The finite-dimensional Hilbert spaces supporting Kaul
representation are the conformal blocks of Wess-Zumino-Witten

Conformal Field Theory (living on 2 copies of the 2-sphere
embedded in the ambient 3-sphere)
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Alternative basis states (odd, even)
& transformations (g-3nj recoupling coefficients)

R e YYYY e YY) Y
Ehke e LY = YLy

lq-ﬁj
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Uiy g | =
Y] e [Y VY

c




"

Expression of the Jones polynomial as v.e.v. (trace) of the
Wilson operator associated with the (plat closure of the)

colored braid o (::::::)

T b T = i
- L il 1 | T {1 -{1 ks -:f__n -:i]"l- D_ﬂ'-j
F(£) ,-l—lx [24i+ 1], x'{0; O[T [cr( hE L) e

i

[2ji +1]q is the g-dimension of the representation ji

For each link L presented as the plat closure of a
colored 2n-strand braid and for a fixed q=2Mi/k
there exists a SNQ automata whose computational
graph is ‘isomorphic’ to the diagram of the braid



" JE

Encoding Kaul states (I)

# qubits
o n|log(k+1)] j

# gates

o« nx poly (k)

Here n is the index of the p
braid group and k is CS
coupling constant
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Encoding Kaul states (II)

lg —
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Quantum circuits for
U (oi) and U (q-6j )
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U (g-6j )

j> jr>
2> 2>
i j=>

ja> ljo>

> b '!i]
2]

C-g6j F— |m> =

|I=

m>

The unitary gate acting on the last register is block-
diagonal and its dimension is fixed by the coupling
constant k. It can be efficiently compiled by
elementary unitary gates.



U (oi)

10>+[1>
NG . M(ox;oy)
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Measuring an auxiliary qubit entangled with the system
we can obtain an approximate evaluation of the Jones
polynomial efficiently
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Combinatorial invariants of 3-manifolds

m Any closed 3-dimensional manifold M can be presented as the
gomplement of a framed knot (link) L embedded in the 3-sphere

M=S\L

m The associated Chern-Simons quantum partition functional is a
topological invariant (Reshetikhin-Turaev) that can be expressed
as a

weighted sum of colored Jones polynomial
J (L, g; j1, 32,...,)N)

Efficient quantum algorithms for these invariants in Garnerone,
Marzuoli, Rasetti, quant-ph/0703037



3-manifolds
as complements
of knots



