Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)

M. Tiepolo C.N.R.-Istituto di Geoscienze e Georisorse – Sezione di Pavia

Bulk vs. Microanalysis

Solid Sampling

"Wish list"

- Submicron spatial resolution
- nm scale depth profiling
- Stoichiometric sampling
- 100 % Transport efficiency
- Quantification at attogram levels

LA-ICP-MS

(Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry)

- Elevata risoluzione spaziale
- Capacità di campionare solidi naturali e sintetici

- Alta efficienza di ionizzazione del plasma
- Alta sensibilità

Determinazioni elementari ed isotopiche Scienze geologiche, ambientali, biologiche, forensi, semiconduttori

Elementi costituenti un LA-ICP-MS

1. Sorgente laser (Ablazione)

2. Cella di Ablazione + linea di trasferimento (Trasporto del particolato)

3. Spettrometro di Massa ICP (Ionizzazione + discriminazione delle masse)

Laser Ablation Systems

- IR 1064 nm Nd:YAG
- VIS 694 nm Ruby
 - 532 nm Nd:YAG
- UV 308 nm XeCl Excimer
 - 266 nm Nd:YAG
 - 248 nm KrF Excimer
 - 222 nm KrCl Excimer
 - 213 nm Nd:YAG
 - 193 nm ArF Excimer
- VUV 157 nm F2

Il processo di ablazione laser

L'interazione fra solido e laser produce:

- Eccitazione elettronica all'interno del solido con espulsione di elettroni
- Trasferimento di energia al lattice del solido
- Fusione e vaporizzazione del campione
- Ionizzazione e formazione di un microplasma costituito dagli elementi del campione
- Interazione con il gas circostante ed espulsione del particolato

Da Borisov et al., 2000

Efficienza di ablazione

266 nm - Calcite

266 nm - Quarzo

Funzione del coefficiente di assorbimento & lunghezza d'onda

Nd:YAG (266 nm) vs. Excimer ArF (193 nm)

266nm laser microprobe configuration

Frequency 10 Hz – Max output energy 35.5 mJ/pulse Spot size 10-150 μ m

Frequency 10 Hz Max output energy : 0.8 mJ/pulse Spot size: 10-50 µm

Excimer Laser ArF 193 nm

ArF 193 nm Homogenizer

Crater bottom

0.1 mm

Single shots with Excimer Laser

Il processo di ablazione

266 nm 5.0 mW 20Hz

QuickTime™ e un decompressore sono necessari per visualizzare quest'immagine.

BCR-2 Vetro basaltico

100 µm

Dimensioni dello spot

variando la posizione del campione rispetto al punto di fuoco del laser

Obiettivo 10 µm 40 µm 100 µm

variando l'apertura del diaframma sul

percorso ottico

Different crater sizes

Principle of Laser Ablation-ICP-MS

Gas Flow Dynamics in the Ablation Cell

Cella di Ablazione + linea di trasferimento

Particle Deposition in Different Gas Environments

Segnale transiente

Diminuzione dell'intensità del segnale nel tempo

Frazionamento elementare (ablazione non stechiometrica)

Cambiamento dell'intensità dei segnali nel tempo indipendente dal

FRACTIONATION INDEX =

MEAN SIGNAL M⁺ (min 2-4)/MEAN SIGNAL Ca⁺ (min 2-4)

MEAN SIGNAL M⁺ (min 0-2)/MEAN SIGNAL Ca⁺ (min 0-2)

Da Fryer et al., 1995

Spettrometro di Massa

Sorgente ICP (1) - ionizzazione

Sorgente ICP (2) - ionizzazione

Mean Free Path

Pressione (torr)	"Mean Free Path"
760 (1atm)	0.1 µm
1	0.05 mm
0.05	1 mm
10-5	5 m
10-6	50 m
10-7	500 m
10-8	5000 m

Affinché gli ioni si possano muovere è richiesto un determinato grado di vuoto all'interno dello strumento

Ingresso nello spettrometro

Analizzatore

• Ha la funzione di discriminare le masse

- I principali tipi di analizzatori sono:
 - Quadrupolo
 - Settore magnetico (+ESA)
 - TOF (Tempo di volo)

Quadrupole analyser

The quadrupole analyser consists of four parallel rods to which a varying voltage is applied, resulting in a fluctuating electric field. The potential applied to the rods is made up of a DC (U) and RF (Vcos wt) component:

Detector

The key result is that for an ion with a particular m/z ratio to pass through the quadrupole (and on to the detector), certain combinations of U and V must be obtained.

Thus, if U and V are scanned such that U/V = const. then successive detection of ions of different mass will be achieved. The following figure illustrates the principle graphically. The three stability curves represent values of U and V for which the three masses m1, m2 and m3 have stable trajectories through the quadrupole. Only those values which lie within the black shaded regions allow ion transmission.

Notice that resolution of the mass analyser can be increased by increasing the slope of the curve U/V = const., and that if U = 0 then ions of all m/z are transmitted.

Features of ICP-SFMS

- + High sensitivity
- 2. Low DLs
- 3. Resolving Power
- 4. Linear Dynamic Range

- Slow acquisition speed

2. High background for the lower mass region (Na, Mg, Al, Si, K, Ca,...)

Settore magnetico a doppia focalizzazione

Reversed Nier-Johnson geometry

Lenti di trasferimento

Magnetic sector

"High power magnet field regulator"

mass (a.m.u.)

Multi-Element Approach with 6 Magnet Jumps across the whole mass range

Comparison Scan Speed

Multi-Element Method: 35 isotopes (10 ms each)

Na, Mg, Al, Si, Ar, K, Ca, Ti, Mn, Fe, Co, Cu, Zn, Ga, Sn, I, Cs, Ba, La, Ce, Eu, Tb, Ho, Tm, Lu, Hf, Ta, W, Au, Tl, Pb, Bi, Th, U, ThO

Standard Technology

- 35 x 10 ms
- 29 x 0.001 s (E-Scan)
- 6 x 0.1 s (Magnet Jump)

979 ms total time / cycle

 \rightarrow 35.8 % measurement cycle

Fast Scanning Technology

- 35 x 10 ms
- 29 x 0.001 s (E-Scan)
- 6 x 0.022 s (Magnet Jump)

511 ms total time / cycle

→ 68.5 % measurement cycle

Settore elettrostatico

MSA + ESA (doppia focalizzazione)

Fenditure ingresso/uscita

Peak shape quad vs. sector field

"Flat top" peaks

Risoluzione

Interferenze

Detector (contatore)

Responsabile del conteggio degli ioni

Acquisizione simultanea vs. Acquisizione sequenziale

 $({}^{44}\text{Ca}/{}^{208}\text{Pb})_{\text{m}} = f[\Delta t; ({}^{44}\text{Ca}/{}^{208}\text{Pb})_{\text{S}}]$

Response curve Isotopic abundance normalized

Determinazioni elementari

Quantification Strategies

Analytical	Possible Solutions	
Task		
Quantitative	External Standards:	Reference Material Samples
		Matrix Matched (Synthetic) Samples ¹⁾
		Dried Aerosol Standard Solutions ²⁾
		(Aerosol) Standard Solutions
	Standard Addition	
Semi-	External Standards:	Reference Material Samples
Quantitative		Matrix Matched (Synthetic) Samples
		Dried Aerosol Standard Solutions
		(Aerosol) Standard Solutions
Isotope Dilution	Standard Addition	
Isotope Ratio	External Standards:	Reference Material Samples
-		Dried Aerosol Standard Solutions
		(Aerosol) Standard Solutions
Signal Ratio	Internal Standardization only	

Analisi quantitativa

$$C_{i}^{SAMP} = \frac{C_{i}^{STD} \cdot I_{i}^{SAMP}}{I_{i}^{STD} \cdot RSF}$$

RSF è uguale per tutti gli elementi in una singola analisi

$$RSF = \frac{C_{is}^{STD} \cdot I_{is}^{SAMP}}{I_{is}^{STD} C_{is}^{SAMP}}$$

Elemento maggiore (livello %)

Elemento presente sia nello standard che nel campione

Elemento multi-isotopo che permetta la scelta di quello a minore abbondanza (segnale meno intenso)

⁴³Ca, ²⁹Si, ²⁵Mg, ⁴⁹Ti

Precision and accuracy at 40 μ m spot size

Sc V Cr Rb Sr Y Zr Nb Ba La Ce Pr Nd SmEu Gd Tb Dy Ho Er TmYb Lu Hf Ta Pb Th U

Determinazioni elementari su fasi mineralogiche

Anfibolo – Clinopirosseno – Ortopirosseno – Titanite – Calcite – Ossidi – Plagioclasio.....

Reperti ossei di età romana

mqq

Li Sc Ti V Cr Co Rb Sr Y Zr Nb Cs Ba La Ce Pr Nd Sm Pb Th U

Determinazioni elementari su matrici di interesse ambientale

Quercia centenaria del Parco del Ticino abbattuta nel 2001

²⁰⁰⁰ 1 spot di 60 µm a cerchio di crescita

<u>10</u> 20 30 40 50 60 70 80 90 100 110 120 13⁻ 140 150

1880

Assenza di standard interno – tutti elementi rapportati al Mg

Pb

Rb

