Interference and Fourier Transform
Spectroscopy

(J Coherence and Interference
 Interferometry and Interferograms

 Fourier components
* time-dependence of a signal

e resolution

O Fourier Transform Spectroscopy
» Advantages

e Spectrometers

d Conclusions



Phase and Amplitude

Any oscillating quantity A(t) = A cos (ot-k'r+¢) (for
electro-magnetic waves the electric field vector and the
magnetic field vector) iIs characterized by :

=the oscillation frequency ®
=the wavelength, A=21/|K| =27 v/

Once the frequency has been fixed (monochromatic wave)
and the velocity of propagation “v” is given

=the amplitude = the maximum value A,
=the phase of the wave 0)

Of course, the phase definition related to a reference e.g. a
second component of the same beam



et us consider a wave travelling from a source S to

a beam splitter B
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The two wave components (A;,A,) recombine at
the exit of the interferometer and sum their
Instantaneous amplitudes: the eventual phase delay
of one wave with respect to the other must be
taken into account.



Phase modulation : Interferogram

e The final amplitude of the
out-coming wave Is then
modulated by the relative
phase shift of the two wave
components.

« When the phase shift (or the
delay) of one of the compo-
nents Is changed (e.g.: by
changing the optical path,
moving a mirror or intro-
ducing a different medium)
the amplitude, and then the
Intensity of the outcoming
wave Is correspondingly
changed.




Interferogram
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Interferogram

« Each component with frequency o and
wavevector k = o/c Is then modulated by the
spatial delay Az;

e The whole beam can be described by the sum (the
Integral) of all the components;

e By considering the intensity of each component
(and of the whole beam) one Is obtaining a sum of
a constant term and a modulated one.



Interferogram
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When the delay Az is described as a continuous, linear
function of time, one can show that the resulting intensity
IS also time dependent and corresponds to the Fourier
transform of its spectral function.




Interferogram

* The function of time (interferogram) obtained Is
different depending on the spectral content of the
light beam:

e A single frequency beam will be modulated as a
continuous cosine function:

« A spectrum extended over a frequency region will
approximate a delta function (pinned at Az=0) as
better as the frequency region is larger.



Interferogram and resolution
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Interferogram and resolution

Problem: it is obviously impossible to measure an
Interferogram developing in time from -co to co.

What is then the effect of taking a limited portion of
signal (let us say from t=-t to t=r)?

Answer: there iIs a kind of inverse symmetry between the two
conjugated spaces. As shown in the pictures above, inasmuch
a structure is narrow on one side, as much its transformed
counterpart iIs extended.

This also means that we can only distinguish among different
spectral components close one to the other if the correspon-
ding interferogram is wide enough.

Resolution depends on the length of the interferogram



Interferogram and resolution

As an example let us consider the interferogram obtained by
the sum of two components at frequency o, and .,
respectively. It will consist of the product of two cosine
function: one of frequency [v(w,+®,)/2c] and the other one of
frequency [v(w,-m,)/2c].

The first one is a rapidly varying function corresponding to
the interferogram of a single component spectrum with an
average frequency between m, and w,.

In order to discriminate between ®, and o, one has to wait a
time corresponding to the period of the second, slowly
varying function, which bring the information about the
difference w,- ®,.

|.... At=4nchv(oro,) ... |
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Resolution and Apodization

The truncation of the interferogram at the limits —t and +t can be viewed
as the multiplication of the interferogram by a boxcar function having the
same limits.

According to the convolution theorem and considering that the Fourier
transform of a boxcar function is the sinc function, the resulting Fourier
transform of the considered interferogram is the convolution of the Fourier
transform of the whole spectrum with the sinc function with argument
(mtt/7).

Since the sinc function introduces some lobes in the spectra of narrow
lines, it is sometimes preferred to multiply the interferogram by a function
which reduces the intensity to zero at the limits —t and +t. This can be a
triangular function, or an exponential decay, or a combination of function.
The effect is the reduction of the lobes, payed by a loss of resolution.

Such an operation is called Apodization.



1.7 Useful functions

There are some functions which occur again and again in physics, and
whose properties should be learned. They are extremely useful in the ma-
nipulation and general taming of other functions which would otherwise
be almost unmanageable. Chief among these are:

1.7.1 The ‘top-hat’ functiont, ITa(x)
This has the property that:

ITa(x) 0,—00 < x < —a/2

= l,—a/2<x<a/2

= 0a/2<x<w

and the symbol IT is chosen as an obvious aid to memory.
Its Fourier pair is obtained by integration:

O(p) = / I, (x)e*™ P dx
e

a/2
oy -/ eZm‘pxdx
—a2

AL 1 mipa —mipa
b L e

sin
i { npa }
npa

a - sinc(mpa)

and the ‘sinc-function’, defineds by sinc(x) = sin x/x is one which recurs
throughout physics. As before, we write symbolically:

ITa(x) = a - sinc(npa)

t In the USA, this is called a ‘box-car’ or ‘rect’ function.
1 Caution: some people define sinc(x) as sin(mx)/ (mx).
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Fig. 1.5. The top-hat function and its transform, the sinc-function.

1.7.2 The sinc-function
sinc(x) = sinx/x
Has the value unity at x = 0, and has zeros whenever x = nn. The
function sinc(x) above, the most common form, has zeros when p =
1/a,2/a,3/a...



2.2 I'heorems

ere are several theorems which are of great use in manipulating
urier-pairs, and they should be memorised. For the most part the
yofs are elementary. The art of practical Fourier-transforming is in
: manipulation of functions using these theorems, rather than in doing
ensive and tedious elementary integrations. It is this, as much as
ything, which makes Fourier theory such a powerful tool for the
ictical working scientist.

[n what follows, we assume:

Fi(x) = @1(p) ; Fa(x) = @a2(p)
iere ‘=" implies that F; and @, are a Fourier pair.
The Addition Theorem:
Fi(x) + Fa(x) = @1(p) + @2(p) (2.1)
The Shift Theorems:
Fi(x + a) = ®y(p)e™™*

Fi(x — a) = ®(p)e2"ire (2.2)

Fi(x — a) + Fi(x + a) = 2®(p) cos 2npa

The third of these theorems can be illustrated: In particular, notice
that if Fi(x) is the d-function, the shift theorems are:

Sixty— e
o(x — a) = £2*ip (2.3)

8(x —a) + é(x + a) = 2cos2npa



The convolution theorem
C(X) = [ FLO)F, (x= X)X =F, () ® F, (¥

La trasformata di Fouroier della convoluzione di 2
funzioni e uguale al prodotto delle trasformate di
Fourier delle 2 funzioni

F(X)®F,(X) < ©,(p)D,(p)



2.5.3 Parseval’s Theorem

This is met under various guises. It is sometimes called ‘Rayleigh’s
Theorem’ or simply the ‘Power Theorem’. In general it states:

[.Fl(xle‘(x)dx;h/ @, (p)®3(p)dp (2.11)

—0 —00

where * denotes a complex conjugate.
The proof of the theorem is in the appendix.

Two special cases of particular interest are :
ifp | F(x) |* dx =i‘(a2 +b) = 45 +1§:[A2+BI] (2.12)
P o = n n 4 2 - n n E
which is used for finding the power in a periodic waveform, and

/ i ? dx =/_ | ®(p) > dp (2.13)

o0 00

for non-periodic Fourier pairs.

2.5.4 The Sampling Theorem

This is also known as the ‘Cardinal Theorem’ of interpolary function
theory, and originated with Whittakert, who asked and answered the
question: How often must a signal be measured (sampled) in order
that all the frequencies present should be detected? The answer is: the
sampling interval must be the reciprocal of twice the highest frequency
present.

The theorem is best illustrated with a diagram. This highest frequency
is sometimes called the ‘folding frequency’, or alternatively the ‘Nyquist’
frequency, and is given the symbol v;.

+ J. M. Whittaker, Interpolary Function Theory, Cambridge University Press, 1935.



34 Useful properties and theorems
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Fig. 2.7. The Sampling Theorem.

Suppose that the frequency spectrum, ®(v), of the signal is F(t) and
that it contains frequencies from 0 to v;. From its frequency spectrum
®(v) we construct a function ®,(v) which is the original spectrum plus
its mirror image. This is symmetrical about the origin and stretches
from —vy to v;. The convolution of ®,(v) with a Dirac comb of period
2vy provides a periodic function ®,(v) and the Fourier transform of
this periodic function is the product of a Dirac comb with ®,(v): in
other words it is the set of Fourier coefficients representing the series.
This is because the Fourier transform of ®,(v) has the same values -
apart from a constant — as the coefficients of its periodic counterpart at
points t = 0,1/2vf,2/2vf,3/2vs,.... Thus the periodic function is always
known provided that the coefficients are known, and the coefficients
are the values of the original signal F(t), multiplied by a constant, at
intervals of time 1/2v;. As more coeffcients become known, that is,
as more samples are taken, more harmonics can be added to make
the spectrum and more detail can be seen in the function when it is
reconstructed.

Formally, the process can be written, with F(¢) and ®(v) a Fourier pair
as usual. The Fourier transform of F(t)II ,(t) is:

/m F(t) L o(t)e™ > dt = ®(v) * I /a(v)

=00

e LT —

rewrite the left hand side as:

f F(t) Z é(t — ,,a)e—zm-vrdt - Z fw F(t)é(t — na)e‘z”"”dz

n=—ao0 n=—oo

o

= z F(na)e-lm'vmr e (D!(V)

n=—00

The left hand side is now a Fourier series, so that @'(v) is a periodic
function, the convolution of ®(v) with a Dirac comb of period 1/a. The
constraint is that ®(v) must occupy the interval —1/2a to 1/2a only; in
other words, 1/a is twice the highest frequency in the function F(r), in
accordance with the sampling theorem.
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DFFT
Discrete Fast Fourier Transform

* The need of a discrete sampling of the
Interferogram data allows the use of a
computer and fast algoritmes to make the
transformation.

* Nevertheless the discrete character of the
data introduces some further problems and
requires some caution in producing and
evaluating the results.



DFFT
Aliasing

 The sampling theorem says that the sampling frequency
must be the double of the largest frequency v, of the
signal. That means that, in order to avoid spurious
contributions (aliasing), one needs some kind of low pass
filter (optical or electrical) which cut the spectrum above

VmaX'

« Due to the discrete character of the sum, the Fourier
transformed function results to be a symmetrical and
periodic function in the frequency space, with period
1/2v,, - (this i1s way a component with frequency larger
than v, should be folded and superimposed to the lower
frequencies, leading to a wrong spectrum)



Phase correction

All the components of an interferometer introduce, in general, both an
Intensity correction and a phase contribution to the interference beam.
The amplitude (intensity) effects are similar to the ones introduced by
any optical device in a spectroscopic experiment, and call for the need
of a reference measurement.

The phase effects are peculiar of the use of an interferometer. In
general, the phase shift introduced by the optics (mirrors, beam splitter,
retardation plates) is a function of the wavelenght and of the
experimental geometry (since one has to do with several different
optical paths when the light beam is not perfectly collimated) and is
adding to the modulation shift intentionally created in the experiment.

The effect of such a situation is that each component is added to form
the interferogram with a different phase shift; in other words, both cos-
(symmetrical) and sin- (antisymmetrical) functions contribute to the
Interferogram. It means that both real- and imaginary- components are
obtained after inverse FT.



Phase correction

 Since the experiment result is usually an intensity value, just the power
spectrum is actually interesting. Nevertheless, the calculation of the phase
correction Is a necessary step in the process.

 Phase spectrum is, in general, a slowly varying function of the frequency;
then a low resolution evaluation is enough to have a good correction.
Such a spectrum can be interpolated in order to be used for the correction
of a high resolution spectrum.

 This way of proceeding has two advantages:

A more efficient averaging of the noise in the spectrum can be achieved
using P(®)=Re(w)/cos(¢(w)) With respectto  P(w) :J Re? (@) + Im? (o)

The possibility of dealing with an interferogram not symmetrically
displaced around its maximum (which is the ordinary case in the
experiments)



How 1s Working a Fourier
Transform Spectrometer
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Malin features of a Fourier
Transform Spectrometer

Besides the necessary lamp and detector, the key features of a
FTIR instrument are:

 An interpherometer moving mirror whose position can be
controlled to a high accuracy (usually such a control is
obtained with the help of a laser);

« A sampling and acquisition system which allows to obtain
the correct time dependence of the interferogram;

* An analysis system which can perform the FFT (fast
Fourier Transformations) and correctly evaluate the
corrections (intensity, phase and noise effects introduced
by the experimental setup).



Malin features of a Fourier
Transform Spectrometer

 The interference signal of a laser beam colinear to the light
path in the interferometer is used to control the position of
the moving mirror with a precision of less than 1 nm;

* The same interference fringes of the laser are used for the
sampling of the data: according to the Nyquist theorem, one
must sample the data at a frequency (at least) double of the
maximum frequency of phase modulation,;

« An usual PC is nowadays enough to perform the mathemati-
cal data treatment (and also to control the whole experiment)



Advantages of FTIR Spectroscopy

1 The so-called Jaguinot advantage: there is no need of slits
which limit the throughput of radiation, so one can have a
large signal without affecting the resolution;

1 The Fellget (multiplex) advantage: the whole spectrum is
obtained simultaneously for all the frequencies from a single
Interpherogram,

1 Because of the two features above, It is possible to obtain
Instruments with a much higher resolving power than in
dispersive instruments, even when the beam energy is low;

 Since mirror mouvements can be very fast (and/or very
precise), time resolution is easily implemented.



DETECTORS
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SOURCES
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BEAMSPLITTERS
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Material Transmission | Refractive | Reflectance |Hardness | Chemical Properties
Range [em '] Index n at |loss {Knoop)
([micrometers]) | 2000 cm” | per surface
Infrasil 57,000-2,800 1.46 ~33% 461 Insoluble in water;
Si0, {0.175-3.6) soluble in HF,
UV Sapphire 66,000-2,000 1.75 ~73% 1370 Wery slightly soluble
ALO, (0.15-5.0) in acids and bases.
Silicon 10,000-100 3.42 - 30 % 1150 Insoluble in most
Si {1.0-100) ackds and bases; soluble
in HF and HNO.,
Calcium Fluoride | 66,000-1,200 1.40 ~28% 158 Insoluble in water,;
CaF, (0.15-8.0) resists most acids and
bases: soluble in NH,
salts.
Barium Fluoride | 50,000-800 1.45 ~33% 82 Low water solubility;
BaF, (0.2-11) sofuble in acid and
NH,CL.
Zinc Sulfide, 22,000-750 2.25 ~ 15% 355 Soluble in acid;
Cleartran (0.45-13.0) insoluble in water.
Zns
Germanium 5,000-600 4.01 -~ 36% 550 Insoluble in water;
(2.0-17) soluble in hot H,S0,
and aqua regia.
Sodium Chloride | 28,000-700 1.52 ~ 4.5% 15 Hygroscopic; slightly
MaCl {0.35-15) soluble in alcohol
and NH,,
AMTIR 11,000-800 2.50 ~ 18% 170 Insoluble in water.
GehsSe Glass (0.8-11) Soluble in bases.
Zinc Selenide 20,000-500 243 ~ 17% 150 Scluble in strong acids;
ZnSe (0.5-20) dissolves in HNG,,
Sitver Chloride 23,000-400 2.00 - 11% 10 Insoluble in water;
AgCl (0.42-25) scluble in NH,OH.
Potassium 33,000-400 1.54 ~45% T Soluble in water,
Bromide {0.3-25) alcohal, and glycerine;
KBr hygroscopic.
Cesium lodide 33,000-150 1.74 - 7.3% 20 Soluble in water and
Csl {0.3-70) alcohal; hygroscopic.
KRS-5 16,000-200 2.38 — 17% 40 Soluble in warm water;
TIBrA {0.6-60) soluble in bases;
ingoluble in acids.
Polyethylane 800-10 1.52 ~ 4.5% 5 Resistant to most
PE (high density) | {16-1,000) solvents.
Diamond 45,000-10 2.40 -~ 17% 7000 Insoluble in water,
C {0.22-1,000) acids, and bases,
TPXm™ 350-10 1,43 ~ 3.3% Simnilar to PE but
Methylpentene | (28-1,000) tramsparent and more
Resin rigid




