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Phase and Amplitude
Any oscillating quantity A(t) = Aocos (ωt-k.r+φ) (for 
electro-magnetic waves the electric field vector and the 
magnetic field vector) is characterized by :

the oscillation frequency ω

the wavelength, λ=2π/|k| =2π v/ω

Once the frequency has been fixed (monochromatic wave) 
and the velocity of propagation “v” is given

the amplitude = the maximum value  Ao

the phase of the wave φ 

Of course, the phase definition related to a reference e.g. a 
second component of the same beam



The two wave components (A1,A2) recombine at 
the exit of the interferometer and sum their 
instantaneous amplitudes: the eventual phase delay
of one wave with respect to the other must be 
taken into account.

Let us consider a wave travelling from a source S to
a beam splitter B

S
B

A1

A2
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Phase modulation : Interferogram
• The final amplitude of the 

out-coming wave is then 
modulated by the relative
phase shift of the two wave 
components.

• When the phase shift (or the
delay) of one of the compo-
nents is changed (e.g.: by 
changing the optical path,
moving a mirror or intro-
ducing a different medium) 
the amplitude, and then the
intensity of the outcoming 
wave is correspondingly 
changed.



Interferogram
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• Each component with frequency ω and 
wavevector k = ω/c is then modulated by the 
spatial delay ∆z;

• The whole beam can be described by the sum (the 
integral) of all the components;

• By considering the intensity of each component 
(and of the whole beam) one is obtaining a sum of 
a constant term and a modulated one.

Interferogram



Interferogram
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When the delay ∆z is described as a continuous, linear 
function of time, one can show that the resulting intensity 
is also time dependent and corresponds to the Fourier 
transform of its spectral function.
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• The function of time (interferogram) obtained is 
different depending on the spectral content of the 
light beam:

• A single frequency beam will be modulated as a 
continuous cosine function;

• A spectrum extended over a frequency region will 
approximate a delta function (pinned at ∆z=0) as 
better as the frequency region is larger.

Interferogram



Interferogram and resolution
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Interferogram and resolution
Problem: it is obviously impossible to measure an 
interferogram developing in time from -∞ to ∞. 

What is then the effect of taking a limited portion of 
signal (let us say from t=-τ to t=τ)?

Answer: there is a kind of inverse symmetry between the two 
conjugated spaces. As shown in the pictures above, inasmuch 
a structure is narrow on one side, as much its transformed 
counterpart is extended.

This also means that we can only distinguish among different 
spectral components close one to the other if the correspon-
ding interferogram is wide enough.

Resolution depends on the length of the interferogram



As an example let us consider the interferogram obtained by 
the sum of two components at frequency ω1 and ω2, 
respectively. It will consist of the product of two cosine 
function: one of frequency [v(ω1+ω2)/2c] and the other one of 
frequency [v(ω1-ω2)/2c]. 
The first one is a rapidly varying function corresponding to 
the interferogram of a single component spectrum with an 
average frequency between ω1 and ω2. 
In order to discriminate between ω1 and ω2 one has to wait a 
time corresponding to the period of the second, slowly 
varying function, which bring the information about the 
difference ω1- ω2.

Interferogram and resolution

+ =

| ….  ∆t = 4πc/v(ω1-ω2) … |



-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
time

580 600 620 640 660 680

frequency

frequency

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
time

580 600 620 640 660 680



Resolution and Apodization
The truncation of the interferogram at the limits –τ and +τ can be viewed 
as the multiplication of the interferogram by a boxcar function having the 
same limits.
According to the convolution theorem and considering that the Fourier 
transform of a boxcar function is the sinc function, the resulting Fourier 
transform of the considered interferogram is the convolution of the Fourier 
transform of the whole spectrum with the sinc function with argument
(πt/τ).
Since the sinc function introduces some lobes in the spectra of narrow 
lines, it is sometimes preferred to multiply the interferogram by a function 
which reduces the intensity to zero at the limits –τ and +τ. This can be a 
triangular function, or an exponential decay, or a combination of function. 
The effect is the reduction of the lobes, payed by a loss of resolution.
Such an operation is called Apodization.







The convolution theorem
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La trasformata di Fouroier della convoluzione di 2 
funzioni è uguale al prodotto delle trasformate di 
Fourier delle 2 funzioni
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DFFT
Discrete Fast Fourier Transform

• The need of a discrete sampling of the 
interferogram data allows the use of a 
computer and fast algoritmes to make the 
transformation.

• Nevertheless the discrete character of the 
data introduces some further problems and 
requires some caution in producing and
evaluating the results.



• The sampling theorem says that the sampling frequency 
must be the double of the largest frequency νmax of the
signal. That means that, in order to avoid spurious 
contributions (aliasing), one needs some kind of low pass
filter (optical or electrical) which cut the spectrum above 
νmax .

• Due to the discrete character of the sum, the Fourier 
transformed function results to be a symmetrical and
periodic function in the frequency space, with period
1/2νmax . (this is way a component with frequency larger 
than νmax should be folded and superimposed to the lower 
frequencies, leading to a wrong spectrum)

DFFT
Aliasing



Phase correction
• All the components of an interferometer introduce, in general, both an

intensity correction and a phase contribution to the interference beam. 
The amplitude (intensity) effects are similar to the ones introduced by 
any optical device in a spectroscopic experiment, and call for the need 
of a reference measurement.

• The phase effects are peculiar of the use of an interferometer. In 
general, the phase shift introduced by the optics (mirrors, beam splitter, 
retardation plates) is a function of the wavelenght and of the 
experimental geometry (since one has to do with several different
optical paths when the light beam is not perfectly collimated) and is 
adding to the modulation shift intentionally created in the experiment.

• The effect of such a situation is that each component is added to form 
the interferogram with a different phase shift; in other words, both cos-
(symmetrical) and sin- (antisymmetrical) functions contribute to the 
interferogram. It means that both real- and imaginary- components are 
obtained after inverse FT. 



• Since the experiment result is usually an intensity value, just the power
spectrum is actually interesting. Nevertheless, the calculation of the phase 
correction is a necessary step in the process. 

• Phase spectrum is, in general, a slowly varying function of the frequency;
then a low resolution evaluation is enough to have a good correction.
Such a spectrum can be interpolated in order to be used for the correction
of a high resolution spectrum.

• This way of proceeding has two advantages:
A more efficient averaging of the noise in the spectrum can be achieved 
using         with respect to

The possibility of dealing with an interferogram not symmetrically 
displaced around its maximum (which is the ordinary case in the 
experiments)

Phase correction
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How is Working a Fourier 
Transform Spectrometer



Main features of a Fourier 
Transform Spectrometer

Besides the necessary lamp and detector, the key features of a 
FTIR instrument are:

• An interpherometer moving mirror whose position can be 
controlled to a high accuracy (usually such a control is 
obtained with the help of a laser);

• A sampling and acquisition system which allows to obtain 
the correct time dependence of the interferogram;

• An analysis system which can perform the FFT (fast 
Fourier Transformations) and correctly evaluate the 
corrections (intensity, phase and noise effects introduced 
by the experimental setup).



Main features of a Fourier 
Transform Spectrometer

• The interference signal of a laser beam colinear to the light
path in the interferometer is used to control the position of 
the moving mirror with a precision of less than 1 nm;

• The same interference fringes of the laser are used for the 
sampling of the data: according to the Nyquist theorem, one 
must sample the data at a frequency (at least) double of the 
maximum frequency of phase modulation;

• An usual PC is nowadays enough to perform the mathemati-
cal data treatment (and also to control the whole experiment)



Advantages of FTIR Spectroscopy
The so-called Jaquinot advantage: there is no need of slits 
which limit the throughput of radiation, so one can have a 
large signal without affecting the resolution;

The Fellget (multiplex) advantage: the whole spectrum is 
obtained simultaneously for all the frequencies from a single 
interpherogram;

Because of the two features above, it is possible to obtain 
instruments with a much higher resolving power than in 
dispersive instruments, even when the beam energy is low;

Since mirror mouvements can be very fast (and/or very
precise), time resolution is easily implemented.










