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Probing the hadron structure with lepton-hadron collisions
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The spin-independent part of Wmn is parameterized by two structure 

functions:

where p is the hadron momentum,  q is the virtual photon momentum 

(Q2 = - q2 > 0). Both of the  functions depend on  Q2 and x = Q2 /2pq,   0< x < 1. 

Projection operators respect Lorentz and gauge symmetries

0== µννµνµ WqWq

12 2xFF = in the Born approximation and
12 2xFF → at x        0



In the QCD framework, he spin-dependent part of Wmn is also 

parameterized by two structure functions:
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where m, p and S are the hadron mass, momentum and spin; 

q is the virtual photon momentum (Q2 = - q2 > 0). Again both   functions 

depend on  Q2 and x = Q2 /2pq,   0< x < 1. They measure asymmetries

g1 measures the longitudinal spin flip
↑↓↑↑ −∝

LL
g σσ  1

g1 +g2 measures the transverse spin flip

↑↓↑↑ −∝+
TT

gg σσ  21



FACTORISATON: is a convolution of the 

the partonic tensor and probabilities to find a polarized parton 

(quark or gluon) in the hadron :

=spinWµν

W
quark

Fquark

Wgluon

Fgluon

+

q q

p p

µνW

DIS off 
quark

DIS off 
gluon

Probability to find 
quark

Probability to 
find gluon



gWqWW
gluonquark δδ µνµνµν ⊗+⊗=

Initial quark 
distribution

Initial gluon 
distribution

DIS off the quark, DIS off the gluon

DIS off quark and gluon can be studied with perturbative QCD, with 

calculating  involved Feynman graphs. 

Probabilities, Fquark and Fgluon involve non-perturbaive QCD. There is no a 

regular analytic way to calculate them. Usually they are defined from  

experimental data at large x and small Q2 , they are called the initial quark 

and gluon densities and are denoted dq and dg .

So, the conventional form of the hadronic tensor is:

are calculated with methods of Pert QCD
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1 QygyxCQyqyxCQxg gq ∆⊗+∆⊗=

Evolved quark

distribution

In particular, g1:

Coefficient 

function

The Standard Approach includes the Altarelli-Parisi alias DGLAP 

alias Q2- Evolution Equations  and the Standard Fits for initial paron 

densities

Evolution Equations: Altarelli-Parisi, Gribov-Lipatov, Dokshitzer

Coefficient 

function

Evolved gluon

distribution
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are splitting functions

Mellin transform of the splitting functions = anomalous dimensions
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In DGLAP, coefficient functions and anomalous dimensions are known 

with LO and NLO accuracy, often at integer  w = n



Piece of terminology

Contributes to 

singlet and 

nonsinglet

Contribute to singlet

Initial quark

Each structure function has both the non-singlet and singlet components:

F1 = F1
NS +F1

S g1 = g1
NS + g1

S
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Coefficient function Anomalous dimension

Initial quark density

Pert QCD

Non-Pert QCD

For example, for the simplest case of the non-singlets g1, F1 
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Q2
m2

x-evolution of Dq with 

coefficient function
Q2 -evolution of dq with 

splitting functions

evolved quark density

Dq at x~1 and 

Q2 .>> m2

F1, g1 at x<<1 

and Q2 >> m2

dq at x ~1 and Q2 ~ m2 

defined from fitting exp 

data

Starting point of
Q2 -evolution

1/x



1

Q2
m2

Q2 -evolution , total resummation   of 

g1 at small x
and large Q2 

starting point 

x-evolution, total resummation of

k

s Q ))/ln(( 22 µα

1/x

k

s

k

s xx ))/1ln((,))/1(ln( 2 αα

DGLAP
yes

no

DGLAP cannot do total resummation of logs of x because of the 

DGLAP-ordering – KEYSTONE of DGLAP
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DGLAP –ordering:
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good approximation for large x when logs of x can 

be neglected.  At x << 1 the ordering has to be lifted

q

p DGLAP small-x asymptotics of g1  is well-known:
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providing the initial parton densities are not singular at small x
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Region A: DGLAP region: large x 

and large Q2

DGLAP should not be used 

in Regions B,C,D

from  theoretical grounds:

Region C:

Region D:

Region B: Total 

resummation of 

ln(1/x) needed

No ln(Q2) in Regions C,D,

so  DGLAP cannot be used

A

B
C

D
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DL  contributions SL contributions

These logarithms  are important at small x but DGLAP does include 

the total resummation of  such logarithms, so the small-x region is  

beyond the reach of the Standard Approach
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In the literature, there are  different fits for initial parton densities. For example,

In practice SA solves this problem through introducing singular

fits for initial parton densities, they cause a fast growth at small x and 

thereby mimic the resummation Week point: no theoretical grounds

Altarelli-Ball-Forte-Ridolfi,   Blumlein- Botcher, Leader- Sidorov-

Stamenov, Hirai et al

Altarelli-Ball-
Forte-Ridolfi,

Parameters should be fixed from experimentδγβα  , , , ,N

Alternative, Straightforward Way: Total resummation of leading logs of x



Spin-independent structure functions at small x
no model-independent results. The most popular models are

using BFKL  Pomeron

Interaction with

Photon 

Pomeron

Initial gluon 

density

Universal ingredient for all 
unpolarized  hadronic cross 

sections

Impact  factor 

Intermediate particles are gluons

Impact  factor 
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using  BFKL for x-evolution 

DGLAP Q2 -evolution 

F1 at x<<1 

and Q2 >> m2

Starting point of
X and Q2 -evolutions

1/x Actual BFKL 

evolution 

The way to use BFKL Pomeron



Pomeron

= = = = S
p1

p2

P’1

P’2

All lines are 

gluons

denotes cut in s

s=(p1 + p2)
2

BFKL pomeron = total resummation of leading logarithms of s
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Derivation of BFKL

Step 1: amplitudes 2 -> 2 + in the multi-Regge kinematics

p1

p2

P’1

P’2

k1

kn ∏+>−+>− = )ln(2

2222
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)/( iqa

i

Born

nn MsAA

Step 2: BFKL Pomeron =|amplitudes 2 -> 2 + n|2

Integration over intermediate states

p1p1

p1

p1

p2p2p2
p2

Reggeons 



BFKL Pomeron sums up leading logarithms, although  

approximately

APPROXIMATIONS:

1. Intermediate particles are in the multi- Regge kinematics 

(LO) or in the quasi multi-Regge kinematics (NLO)

2. as is fixed either at unknown scale (LO) or the scale is set

in a model-dependent way (NLO)

NLO corrections are too great to neglect NNLO etc         NO END

BFKL Pomeron predicts the Regge behavior for  F1 and F2 at x <<1
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 Pomeron

intercept
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Value of the BFKL intercept

Fadin –Kuraev-

Lipatov

Fadin-Lipatov

LO and NLO intercepts violate the Unitarity and 

Froissar bound 
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It is difficult to discriminate between BFKL and DGLAP at the present 
state of experiment,  all hopes for LHC

Identical first-loop factors

Difference comes from  higher-loop factors
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1 )/(Q (1/x) ~ ∆∆ µLL
g Bartels- Ermolaev-

Manaenkov-Ryskin, 

Ermolaev-Greco-Troyan

Obviously
DGLAPLL

gg 11 >> when x���� 0

Polarized DIS

whereas DGLAP predicts
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Resummation of Leading Logarithms
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DGLAP-

parameterization

Arguments  in favor of the 

Q2- parameterization:
Amati-Bassetto-Ciafaloni-Marchesini

- Veneziano;  Dokshitzer-Shirkov

What is appropriate  parameterization of              at small x ? sα

NEXT IMPORTANT STEP:

Standard parameterization
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DGLAP-parameterization

However, such a parameterization is 

good for large x only. At small x  :
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Ermolaev-Greco-Troyan

When DGLAP-

ordering is used  and  

x ~1time-like argument

Participates in the 

Mellin transform
space-like 
argument, 

no Mellin 
transform

)(  2
Qss αα =DGLAP -parametrization



Obviously, this parameterization and  the DGLAP one

converge when x is large but differ a lot at small x

So, for studying g1 in the small-x region, it is necessary to do: 

1. Total resummation of logs of x

2. New parameterization  of the QCD coupling 

The basic idea: the formula ))/(kln  /(1)( 222 Λ= bksα

valid when

it is necessary to introduce an infrared cut-off for k2

It is convenient to introduce the cut-off in the transverse space:

Lipatov
22 µ>⊥k

22 Λ>>k



As value of the cut-off is not fixed, one can evolve the structure functions 

with respect  to m the name of the method:

Infra-Red Evolution Equations (IREE)

Highlights of the history of the method    

Analyses of two-particle cuts in Regge kinematics                   Gribov

Factorization of photons with small transverse momenta Gribov

Quark-quark scattering amplitudes Kirschner-Lipatov

Infrared cut-off in the transverse momentum space Lipatov

QCD inelastic processes in Regge kinematics Ermolaev-Lipatov

Applications to Polarized Deep-Inelastic scattering Bartels-Ermolaev
-Manaenkov-Ryskin- Greco-Troyan



Expression for the non-singlet g1 at large Q2: Q2 >> 1 GeV2 
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Initial quark density

New coefficient function and anomalous dimension sum up leading logarithms

to all orders in as
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Compare our non-singlet anomalous dimension to the LO DGLAP one:

expand C and H into series in

small/large x small/large n
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Expression for the singlet g1 at large Q2:

here
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GeV 5    ;22 ≈> µµQ

Large Q2 means
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e
 ~
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Small –x symptotics of g1: when x ���� 0, the saddle-point method leads to

Nonsinglet  intercept 0.42  NS =∆

0  >qδ 01 >NS
g

At large x, g1
NS and g1

S are positive

In the whole range of x at any Q2
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g 0.064 - q - )S( S δδ=∆

With intercept 0.86  S =∆

Asymptotics of the singlet g1 are more involved

Warning: asymptotic expressions g1~(1/x)D are reliable at x<10-5

and

Interplay between the quark and  gluon densities can lead to different  

sign of g1 singlet at x<<1 
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like it should  be for 

the genuine intercept

Obtaining intercepts: Plot 

QCDΛ
GeV  5.5    GeV,  1 00 ≈≈ SNS µµ

Optimal scales



qgr δδ /=

g1>0

g1<0
r

g1

r = -15.6

S(r) = -1 – (1/15.6) r

Fine tuning: g1>0 at large x
but g1=0 at x<<1

At large x, g1 singlet is positive .  When x--> 0, the sign of asymtpotics of  

the singlet g1 depends on the ratio between the initial parton densities

g1 singlet is
always >0

g1 >0  at 

large x but
g1<0 at x<<1



Anatomy of the singlet intercept

A. Graphs with 

gluons   only:
1.1  =∆S

violates unitarity

B. All graphs
0.86  =∆S

No violation of unitarity

Values of the 

intercepts 

perfectly agree

with results of 

several groups 

who fitted 

experimental data. 

similar to LO BFKL

non-singlet

intercept

singlet

intercept

Soffer-Teryaev, Kataev-Sidorov-

Parente, Kotikov-Lipatov-Parente-
Peshekhonov-Krivokhijine-Zotov, 

Kochelev-Lipka-Vento-Novak-

Vinnikov



(x)  )( δδ =xq 1  )( =ωδq

in x- space in Mellin space

Numerical comparison shows that the impact of the total resummation of 

logs of x becomes quite sizable at x = 0.05 approx. 

PUZZLE:     DGLAP should have Failed  at x < 0.05. 

However, it does not take place. 

Comparison of our results to DGLAP at finite x –no asymptotic formulae used

Comparison depends on the assumed shape of initial parton densities. 

The simplest  option: use the bare quark input



singular

factor

75.0  ,3.34 ,7.2  ,58.0 ≈≈≈≈ δγβα

])1)(x  1[( x)( - βδα γδ xNxq −+=

normalization

SOLUTION TO PUZZLE: consider in more detail  

standard fits for initial parton densities

regular factors

parameters

are fixed from fitting experimental data at large x



In the Mellin space this fit is
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Leading pole

a=0.58 >0

Non-leading poles

-k +a<0

the small-x DGLAP asymptotics of g1 is (inessential factors  dropped )

α(1/x) ~1

DGLAP
g

Comparison it to our asymptotics

( ) NSx
∆

/1~g   1

shows that the singular factor in the DGLAP fit mimics  the 

total resummation of ln(1/x) . However, the  value a = 0.58 

sizably differs from our non-singlet intercept  =0.4

phenomenology

calculations



Although our and DGLAP asymptotics lead to the x- behavior of

Regge type, they predict different intercepts for  the  x- dependence  

and different Q2  -dependence: 

( ) 2/22

  1 / )/1(~g 
∆∆ µQx

whereas  DGLAP predicts the steeper 

x-behavior and

the flatter Q2   -behavior:

)(2

1 )(ln(1/x) ~ αγα
Qg

DGLAP

x-asymptotics was checked 

with  extrapolating available 

exp data to x���� 0. 

It agrees with our values of D 
Contradicts DGLAP

our and the DGLAP 

Q2 –asymptotics have not

been checked yet.  

our calculations

DGLAP 

Common opinion: the total resummation is not relevant at available x

Actually: the resummation has always been accounted for through the 

standard fits, however without realizing it 



Structure of DGLAP fit once again:

])1)(x  1[( x)( - βδα γδ xNxq −+=

Can be dropped when 

ln(x) are resummed

x-dependence is weak at x<<1 and can be 

dropped

Common  opinion: fits for dq   are singular  but defined and large x,

then convoluting them with coefficient functions weakens the singularity

)()(),( xqyqyxC ∆=⊗δ Obviously, it is not true:

They both are singular equally

ax)  N(1  )( +≈xqδTherefore at x << 1

initial x-evolved
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Region A: DGLAP region: large x 

and large Q2

DGLAP should not be used 

in Regions B,C,D

Region B: Total 

resummation of 

ln(1/x) needed

A

B
C

D



Unified description of g1 in Regions A&B: 

large Q2 and arbitrary x:

WAY OUT – interpolation expressions combining our approach and 

DGLAP

DGLAP

Good at large x because 

includes exact two-loop 

calculations but bad at small x

as it lacks the total resummaion

of ln(x)

our approach

Good at small x , includes the total 

resummaion of ln(x) but bad at large x

because neglects some contributions 

essential in this region 

1. Expand our formulae for coefficient functions and anomalous  

dimensions into series in the QCD coupling

2. Replace the first- and second- loop terms  of the expansion by 

corresponding DGLAP –expressions



Non-singlet g1: Our expressions
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New  formulae combine Resummation and DGLAP:

DGLAPLOLLCDGLAPLOLLC CCCCHHHH  1 1    +−=+−=

formulae for the  singlet anomalous dimensions and coefficient functions are 

written quite similarly

No  singular parton densities are required



Region C: small x and small Q2

At Q2 >> m2  g1 depends on Q2 through logarithms:
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At Q2 < m2  g1 depends on Q2 through powers:

again resummation of leading ln(x)



Description of g1 in Region C: small Q2 and small x: 

Generalization of our previous results through the shift

zxx +=+=→+→  )/2pq(Q     x          QQ 22222 µµ

Infrared  cut-off

Similar shifts have been used for DIS structure functions by many 

authors, however from phenomenological considerations. We do 

It from analysis of the involved Feynman graphs
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It leads to new expressions: non-singlet g1 at small x and arbitrary Q2



g1 in Region B: 

large Q2 and small x

Step 1:
Resummation of leading 

ln(1/x) and ln(Q2)

Step 2:
Combining above 

results and DGLAP

g1 in Region A&B: 

large Q2 and arbitrary x

Step 3:

Shift 
222 QQ µ+→

g1 in Region C&D: 

small Q2 and arbitrary x

Thus, we arrive at universal and model-independent 

description of g1 at arbitrary Q2 and x without singular fits:

Technology of getting universal description of g1:    
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expression for the  singlet g1 is  written quite similarly
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Main impact on g1 in Regions A,B,C,D comes from:

Total 

resummation 

of leading  
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ln(Q2) 

DGLAP 

Shift 
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Recent applications of our approach to:

1. COMPASS results

2.  Power Q2-corrections



COMPASS is a high-energy physics experiment at the Super Proton 

Synchrotron (SPS) at CERN in Geneva, Switzerland. The purpose of

this experiment is the study of hadron structure and hadron 

spectroscopy with high intensity muon and hadron beams.

On February 1997 the experiment was approved conditionally 

by CERN and the final Memorandum of Understanding was signed in 

September 1998. The spectrometer was installed in 1999 - 2000 and 

was commissioned during a technical run in 2001. Data taking started 

in summer 2002 and continued until fall 2004. After one year shutdown 

in 2005, COMPASS will resume data taking in 2006.

Nearly 240 physicists from 11 countries and 28 institutions work in

COMPASS

Taken from wwwcompass.cern.ch



COMPASSCOMPASSCOMPASSCOMPASS

COmmon Muon Proton Apparatus for Structure and Spectroscopy

Artistic view of the 60 m long COMPASS

two-stage spectrometer. The two 

dipole magnets are indicated in red

Taken from wwwcompass.cern.ch



22 µ<<Q

Small Q2

Singlet g1

both x- and Q2- dependences are flat, even for  x<<1. when

g1

1/x

Location of the line is 

determined by the z-
dependence
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Ng/Nq = 0 Ng/Nq = -5 Ng/Nq = -8

,)2/( 1

2

1 GNeg qq=

, , qq NqNq ≈≈ δδ
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Approximating

Position of the turning point is sensitive to Ng/Nq ,  so the  experimental 

detection  of it will allow to estimate Ng/Nq  
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Power Corrections to non-singlet g1

PC are supposed to come from higher twists. 

No satisfactory theory 

is known for the higher twists 

Standard way of obtaining PC from experimental

data at small x:                                               Leader-Stamenov- Sidorov

Compare experimental data to predictions of the Standard Approach

and assign the discrepancy to the  impact of PC
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Counter-argument:

1. DGLAP, the main ingredient of SA,  is theoretically unreliable at small x, 

so comparing experiment to it is not so productive: it proves nothing

2. SA cannot explain why PC appear at Q2 > 1 GeV2 only and predict 

what happens at smaller Q2

Our approach can do it:
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where w = 2pq and Q2 can be large or small,  m = 1 GeV



m =1 GeV, so when Q2 < 1 GeV2, expansion into power series  is:  
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At Q2 > 1 GeV2  expansion into series is different: 
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Conventionally looking 

Power Corrections

These Power Corrections have perturbative origin and should

be accounted in the first place. Only AFTER THAT one can reliable 

estimate a genuine impact of higher twist contributions



Conclusion

Standard Approach

DGLAP was originally developed for operating at the region where both x 
and Q2 are large. Basic ingredients of the DIS structure functions – coefficient 

functions and splitting functions (anomalous dimensions) are calculated in 

DGLAP in the first and second loops.  By construction, DGLAP describes the 

Q2–evolution but cannot  describe the x–evolution. Accounting for the x–

evolution is especially important in the small-x region.  

In order to extend DGLAP to the region of small x and large Q2, it have been 

complemented with rather complicated expressions for the initial parton

densities  dq and dg found from fitting experimental data.

DGLAP + Standard fits form Standard Approach (SA). SA describes DIS at 

large Q2 and arbitrary x.

Alternatives to SA

Unpolarized DIS: No model-independent description. Models involve either 

phenomenological Pomerons or BFKL. Both LO and NLO BFKL  intercepts are 

positive. They violate both the untiarity and Froissar bound. It is urgent to 

calculate NNLO corrections to the intercept



. 

As the Pomeron intercept is small, it is difficult to discriminate between these 

approaches

Polarized DIS:

Model-independent description of g1 combines total resummation of leading 

logarithmic contributions, DGLAP expressions, and shift of Q2 . 

It represents g1 at arbitrary x and Q2 .

DGLAP agrees with experimental data only when special expressions for 

initial parton densities are used. They include singular factors, though DGLAP

offers no theoretical explanation of the origin of the factors 

Actually, the singular factors mimic total resummation of leading logarithms

When the resummatiion is accounted for, the expressions for initial parton 

densities can be simplified down to constants  




