Crossing and Veering phenomena in a crank-mechanism

Marco Brino
Outline

Aim

- Investigate the dynamic behaviour of structures with close or even coincident eigenvalues

Dynamics with close eigenvalues

- Cyclic / symmetric structures
- Non-cyclic / non-symmetric structures
- Effects of boundary conditions
- From component to system dynamics
State of the art

➢ **Coincident or close modes structures:**

- **Symmetric structures**
 symmetric shells, bells, bladed disk, …

- **Cyclic structures**
 lumped systems, bladed disk (again), …

- **Uncoupled or slightly coupled systems**
 symmetric beams, bladed disk (again), …
Many references on theoretical dynamic systems with coincident or close eigenvalues

Young, Hwang, Chinese Proceed. 2007

Few references on experimental test-rigs

No experimental test-rigs with NO-SYMMETRY or NO-CYCLIC, with structures “near” to wing-shape

Adhikari, duBois, Lieven, JSV 2009
Most of them presents SYMMETRY and/or CYCLIC characteristics, or some UNCOUPLING parameter.

Chan, Ewins, MSSP 2010

Perkins, Mote, JSV 1986

Balmes, JSV 1993
Modal Analysis framework

Basic assumptions:

Equations of motion in matrix form: \(\mathbf{M} \ddot{\mathbf{x}} + \mathbf{C} \dot{\mathbf{x}} + \mathbf{K} \mathbf{x} = \mathbf{f} \)

Considering the undamped system: \(\mathbf{M} \ddot{\mathbf{x}} + \mathbf{K} \mathbf{x} = \mathbf{f} \)

Solving eigenproblem: \(\det(\mathbf{K} - \omega^2 \mathbf{M}) = 0 \)

Solution: \(\omega_r^2 \) eigenvalues
\(\Phi^{(r)} \) eigenvectors
Structures with symmetry:

- Example: BELL

4th Mode

\(f_4 = 2860 \text{ Hz} \)

5th Mode

\(f_5 = 2860 \text{ Hz} \)
Coincident eigenvalues

Structural modifications:

- Modify lumped elastic parameters on symmetric structures to enforce coincident mode shapes
Coincident eigenvalues

Structural modifications:
- Modify lumped elastic parameters on symmetric structures to enforce coincident mode shapes
Coincident eigenvalues

Structural modifications:

- Modify lumped elastic parameters on symmetric structures to enforce coincident mode shapes
Crossing and veering phenomena

Cyclic structures

Deterministic analysis of crossing and veering phenomena:
- Crossing $k_{12} = k_{23} \div k_{31} = 90\% \div 110\% k_{12}$
- Veering $k_{23} = 102 \% k_{12} ; k_{31} = 90\% \div 110\% k_{12}$

Sensitivity to uncertainly and variability
- Choice of index to discriminate crossing and veering → MAC
- Orthogonality properties
- Sensitivity to eigenvalues AND eigenvectors changes
Curve Crossing: $k_{12} = 1 \text{ N/m}; k_{23} = 1 \text{ N/m}$

K_{23}: discriminant

K_{31}: variable

MAC index

Before

- Mode 1: $\lambda_1 = 0 \text{ rad}^2/\text{s}^2$
- Mode 2: $\lambda_2 = 2.98 \text{ rad}^2/\text{s}^2$
- Mode 3: $\lambda_3 = 3 \text{ rad}^2/\text{s}^2$

After

- Mode 1: $\lambda_1 = 0 \text{ rad}^2/\text{s}^2$
- Mode 2: $\lambda_2 = 3 \text{ rad}^2/\text{s}^2$
- Mode 3: $\lambda_3 = 3.02 \text{ rad}^2/\text{s}^2$

Path of modal properties

Curve Crossing

$D.o.F.$

$\lambda_1 = 0 \text{ rad}^2/\text{s}^2$

Curve Veering

$D.o.F.$

$\lambda_1 = 0.85 \text{ rad}^2/\text{s}^2$

Change of mode-shape order
Crossing and veering phenomena

Curve Crossing: $k_{12} = 1$ N/m; $k_{23} = 1$ N/m

Curve Veering: $k_{12} = 1$ N/m; $k_{23} = 1.02$ N/m

K23: discriminant

K31: variable

LEISSA: "figuratively speaking, a dragonfly one instant, a butterfly the next and something indescribable in between"

Change of mode-shape order

Path of modal properties

Before

After
Crossing and veering: “wing” structure

Non-cyclic structure

- LUPOS
- CAD model
- Experimental Test-rig

Beam 1
Mass 1
Beam 2
Mass 2
Beam 3
Mass 3
Crossing and veering: comparison LUPOS vs. 3D FEM

Parametric FEM: configuration parameter looped through the configurations to run families of FEA solutions

- **LUPOS model**

- **Solidworks CAE model**
Crossing and veering: FEM model updating

Experimental Modal Analysis

- 19 configurations (5° steps)
Crossing

Modal Assurance Criterion

\[MAC_{i,j} = \frac{\left(\Phi_i^T \Phi_j \right)^2}{\left(\Phi_i^T \Phi_i \right) \left(\Phi_j^T \Phi_j \right)} = \cos^2 \alpha_{i,j} \]

- Crossing: modes 4/5 @ 68/69°
Crossing

Modal Assurance Criterion

➤ Crossing: modes 4/5 @ 68/69°

\[MAC_{i,j} = \frac{\left(\Phi_i^T \Phi_j\right)^2}{\left(\Phi_i^T \Phi_i\right)\left(\Phi_j^T \Phi_j\right)} = \cos^2 \alpha_{i,j} \]
Veering

Modal Assurance Criterion

\[MAC_{i,j} = \frac{\left(\Phi_i^T \Phi_j\right)^2}{\left(\Phi_i^T \Phi_i\right)\left(\Phi_j^T \Phi_j\right)} = \cos^2 \alpha_{i,j} \]

- Veering: modes 5/6 @ 72/81°
Veering

Modal Assurance Criterion

Veering: modes 5/6 @ 72/81°
Mode shapes plot

Information exchange without eigenvalues coincidence

3 interacting modes …
Crossing and veering: the crank-mechanism

Full 4c/4s crank-mechanism:

- CAD-CAE parametric modal simulations
Configuration definition in crank-mechanism

Config. 0°

Config. 45°

Config. 90°

Config. 135°

Config. 180°
Basic assumptions:

- Boundary Conditions
 - free-free
 - pinned-pinned
Crank-mechanism modelled in LUPOS

![Graphs showing crank-mechanism modelled in LUPOS with matrices M and K.](image)
Frequency loci w.r.t. crank angle in both conditions

Different behaviour with different BCs
Frequency loci w.r.t. stiffness of BCs

Configuration parameter:

- BC modelled as grounded springs

Config. 0°

Free-free

Freq. [Hz]

Pinned-pinned

Stiffness [%]

9th mode – 2 Torsional

6th mode - 1 Torsional

1st mode – Rigid body

1st-6th modes - Rigid body

25th mode - 1 Torsional
Frequency loci w.r.t. stiffness of BCs

Different configuration:

- Crank angle

Config. 90°
Influence of components coupling:

- From component to system dynamics
Comparison between component and system dynamics

Again different behaviour w.r.t. crank angle

➢ From component to system dynamics

Crankshaft

Crankmechanism

- 13th mode - 1 Torsional
- 12th mode - 4 Bending xy
- 11th mode - 2 Bending yz
- 10th mode - 3 Bending xy
- 9th mode - 2 Bending xy
- 8th mode - 1 Bending yz
- 7th mode - 1 Bending xy
Modal Assurance Criterion

MAC index to compare mode shapes:

➢ Not an efficient index to compare component and assembly mode shapes

\[
MAC_{i,j} = \frac{\left(\Phi_i^T \Phi_j\right)^2}{\left(\Phi_i^T \Phi_i\right)\left(\Phi_j^T \Phi_j\right)} = \cos^2 \alpha_{i,j}
\]
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Single component: crankshaft

\[
\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 0\%
\]

- 8th mode - 1 Bending yz
- 12th mode - 4 Bending xy
- 11th mode - 1 Torsional
- 10th mode - 3 Bending xy
- 9th mode - 2 Bending xy
- 7th mode - 1 Bending xy
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Rods and pistons uncoupled

\[\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 0.01\% \]
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Negligible coupling …

\[
\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 1\%
\]
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Weak coupling …

\[
\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 10\%
\]
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Significant coupling ...

\[
\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 50\%
\]
Progressive influence of components interaction

Frequency w.r.t. crank angle

- Full coupling

\[\frac{E_{PCR}}{\rho_{PCR}} = \text{const} \quad \rho_{PCR} = 100\% \]
Different use of MAC

Comparison between crankshaft and crank-mechanism:

- Which system mode shape corresponds to component one?

Crankshaft mode 7 – 1 bend xy

Crankshaft mode 8 – 1 bend xz
Different use of MAC

Comparison between crankshaft and crank-mechanism:

- Which system mode shape corresponds to component one?

Crankshaft mode 9 – 2 bend xy

Crankshaft mode 10 – 3 bend xy
Different use of MAC

Comparison between crankshaft and crank-mechanism:

- Which system mode shape corresponds to component one?

Crankshaft mode 11 – 1 tors

Crankshaft mode 12 – 4 bend xy
Different use of MAC

Comparison between crankshaft and crank-mechanism:

- Which system mode shape corresponds to component one?
Resume

Dynamics with close eigenvalues

- Cyclic / symmetric structures
- Non-cyclic / non-symmetric structures
- Effects of boundary conditions
- From component to system dynamics

Acknowledgements / People involved

- Prof. Stefano TORNINCASA
- Ing. Elvio BONISOLI (elvio.bonisoli@polito.it)
- Ing. Marco BRINO (marco.brino@polito.it)
- Ing. Gabriele MARCUCCIO
- Ing. Francesco DI MONACO