Assessment of geometrical remodelling of the aortic arch after hybrid treatment

Giovanni Spinellaa*, Alice Finotelloa,b, Michele Contic, Elena Faggianod, Valerio Gazzolaa, Ferdinando Auricchioc, Nabil Chakfed,e, Domenico Palomboa and Bianca Panea

a Department of Vascular and Endovascular Surgery, Ospedale Policlinico San Martino, University of Genoa, Genoa, Italy
b Department of Experimental Medicine, University of Genoa, Genoa, Italy
c Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
d Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
* European Group for Research on Prostheses Applied for Vascular Surgery (GEPROVAS), Strasbourg, France

* Corresponding author. Vascular and Endovascular Surgery Unit, Ospedale Policlinico San Martino, University of Genoa, Largo Rosanna Benzi, 10, 16132 Genoa, Italy. Tel: +39-010-5552424; fax: +39-010-5556653; e-mail: giovanni.spinella@unige.it (G. Spinella).

Received 2 August 2018; received in revised form 17 October 2018; accepted 25 October 2018

Abstract

OBJECTIVES: The aim of this study was to measure the morphological remodelling of the ascending aorta, aortic arch and thoracic aorta after aortic arch hybrid treatment including debranching and stent graft implantation.

METHODS: Preoperative, 1-month and 1-year follow-up of computed tomography angiography scans of 22 patients were analysed to compute the lumen centreline from the aortic root to the coeliac trunk, and the following measurements were derived: the total centreline length, distance from the aortic root to the left subclavian artery, distance from the left subclavian artery to the distal landing zone. For both pre- and postoperative centrelines, the pointwise curvature was measured at the proximal and the distal landing zones. The mean curvature increased at landing zones.

†The first two authors contributed equally to this paper.

© The Author(s) 2018. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
INTRODUCTION

Although recent guidelines recommend the endovascular approach as the treatment of choice for patients affected by thoracic aortic diseases [1], the anatomy of the thoracic aorta may affect the feasibility of this approach in many settings. In particular, the need to obtain an adequate proximal landing zone of the healthy aorta is crucial to avoid proximal type I endoleak or endograft migration [2]. Indeed, proximal landing zones with an at least 20 mm-long, healthy and relatively straight neck are needed for thoracic endograft placement [3].

On the contrary, in patients with short and highly angulated landing zones, a hybrid arch treatment performed in Ishimaru’s zones 0, 1 or 2 [4] has been introduced as a feasible technique for revascularization of the supra-aortic vessels to obtain an adequate proximal landing zone for thoracic endovascular aortic repair (TEVAR).

Unfortunately, the aortic arch is a critical zone for device delivery, and its intrinsic shape plays a crucial role in the rate of acute failure of thoracic endografts [5]. Indeed, the deployment of an endograft inside the flexible aortic tissue might lead to hard-to-predict morphological variations of the vessel shape that can be correlated with short-, mid- and long-term complications. Identifying the changes in aortic arch morphology between pre- and postoperative configuration could, therefore, be important to understand the causes of such complications and to predict procedure-related adverse events.

To date, other investigators have already focused on the role of anatomical factors in positioning outcomes [6] or have evaluated the changes in the aortic arch curvature following TEVAR [7]. However, little is known about the geometric changes that occur at landing zones after aortic arch hybrid treatment and how these could be related to possible complications.

On the basis of these considerations, the aim of our study was to measure the morphological remodelling of the thoracic aorta in patients who underwent aortic arch hybrid treatment. Aortic remodelling was measured by a quantitative analysis of the aortic geometry before and after a hybrid arch repair.

MATERIALS AND METHODS

The research protocol was submitted to the local institutional medical ethics committee; the need for informed consent from the patients was waived because of the retrospective nature of the analysis and the use of anonymous data.

RESULTS: At the 1-month follow-up, centreline length were already significantly increased (382.66 ± 48.69 to 388.1 ± 50.75 mm; P = 0.01). Centreline pointwise curvature increased in the proximal (+29%, P = 0.011) and the distal zones (+63%, P = 0.004). Similarly, pointwise curvature of the outerline significantly increased in the proximal (+77%, P = 0.01) and the distal landing zones (+100%, P = 0.04). The centreline mean curvature increased in the ascending aorta (+7%, P = 0.02) and decreased in the endografting region (-3.3%, P = 0.004). No evidence of a relationship of such a remodelling with the type of endograft and the type of pathology was observed. This remodelling trend was confirmed by the analysis of 1-year computed tomography angiographies.

CONCLUSIONS: Hybrid arch repair was associated with a significant elongation of the vessel and a significant increase in the curvature on the ascending aorta and the descending aorta and on the endograft proximal and the distal landing zones.

Keywords: Aortic diseases • Aortic arch • Hybrid procedure • Geometric analysis

<table>
<thead>
<tr>
<th>Table 1: Patient data and comorbidities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Age (years), mean ± SD</td>
</tr>
<tr>
<td>Female, n (%)</td>
</tr>
<tr>
<td>Hypertension, n</td>
</tr>
<tr>
<td>Diabetes, n</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease, n</td>
</tr>
<tr>
<td>Coronary heart disease, n</td>
</tr>
<tr>
<td>Atrial fibrillation, n</td>
</tr>
<tr>
<td>Chronic renal failure, n</td>
</tr>
</tbody>
</table>

SD: standard deviation.
out by means of an end-to-side anastomosis between the partially clamped AsAo and the brachiocephalic trunk and the left common carotid artery using a bifurcated polyester textile graft. The left subclavian artery was revascularized during TEVAR by carotid–subclavian artery bypass.

Patients with landing zone 1 underwent right common carotid artery to left subclavian artery bypass (using an 8–10-mm diameter stretch polyester textile graft), whereas the left common carotid artery was reimplanted on bypass with an end-to-side anastomosis (Fig. 1).

Patients with a landing zone 2 underwent carotid-subclavian artery bypass. Debranching was carried out by means of an end-to-side anastomosis between the left common carotid artery and the left subclavian artery using an 8–10-mm diameter stretch polyester textile graft (Fig. 1).

The technical success was defined by an accurate endograft deployment without the need for an additional endograft deployment and the coverage of target-selected aortic vessels.

Imaging analysis protocol

All 22 patients underwent preoperative and 1-month postoperative contrast-enhanced CTA, while 19 of them were considered for 1-year follow-up analysis; indeed, 3 patients did not undergo 1-year postoperative CTA due to death in 1 case and reintervention in 2 cases before the completion of 1-year follow-up. The slice thickness and the pixel spacing were in the range of 0.5–1.25 mm and 0.55–0.97 mm, respectively. All scans were transferred to a workstation in an anonymous format for image processing as described below. The whole processing procedure was performed using the open-source Vascular Modelling Toolkit library [8]. An overview of the image processing workflow is shown in Fig. 2. Firstly, we performed a semiautomatic gradient-based level set segmentation to extract a 3-dimensional (3D) model of the thoracic aorta lumen. Segmentation of postoperative images could also be used to retrieve the endografts 3D models. Afterwards, each postoperative vessel surface was...
automatically registered to the preoperative one by means of the Iterative Closest Point algorithm [9], a robust method for a rigid registration of 3D data, which is implemented in the Vascular Modelling Toolkit as well. Finally, pre- and postoperative centrelines were automatically computed [10] from the sinotubular junction of the aortic root (AR) to the plane crossing the coeliac trunk.

When the preoperative 3D geometries involved saccular aneurysms, a virtual preoperative surface model excluding the aneurysmal sac was created. This procedure was performed to prevent the vessel centreline from being affected by the bulbous protrusion. The removal of the saccular aneurysm was performed by identifying the centreline points that define the area of influence of the sac, removing the portion of centreline among these extremities and finally creating a new interpolated parent artery centreline. The original method already implemented in the Vascular Modelling Toolkit was partially modified to manually adjust the position of the 2 points delimiting the aortic aneurysmal sac.

Given the lumen centreline, we performed the following measurements: length of the whole centreline (L), \(D_{AR-LSA} \) and \(D_{LSA-D} \). Curve was evaluated at the proximal (P1) and the distal (D1) landing points for both the centreline and the outerline paths. (C) Local curvature computation: in each point, the curvature value is extracted as the inverse of the radius in the local osculating circle. \(D_{AR-LSA} \): distance from the AR to the proximal edge of the left subclavian artery; \(D_{LSA-D} \): distance from the left subclavian artery proximal edge to the distal landing zone.

As preoperative and postoperative vessel surfaces were automatically registered with the Iterative Closest Point algorithm, the position of the endograft was also identified onto the preoperative path lines, thus allowing us to measure the local curvature values on both pre- and postoperative paths (centreline and outerline) in 2 specific points: the proximal (P1) and the distal (D1) extremities of the aortic portion involved in the endovascular implant(s). The position of these points is highlighted in Fig. 3B.

Furthermore, the values of local curvature computed along the centreline were averaged to obtain the preoperative and postoperative mean curvatures of the total aorta (from the AR to the coeliac trunk), the AsAo (from the AR to P1), the endografting region (ER) (from P1 to D1) and the descending aorta (from D1 to the coeliac trunk). Calculations were made both for the whole group of patients (\(n = 22 \)) and for the 2 sub-groups, i.e. Z0 (\(n = 10 \)) and Z1–2 (\(n = 12 \)). Patients with landing zones Z1 and Z2 were grouped together (Z1–2) due to the limited number of Z1 cases (\(n = 3 \)) and similar aortic arch morphology between Z1 and Z2. As mentioned before, at 1-year, 3 patients were lost to follow-up (2 patients in the Z0 group and 1 patient in the Z1–2 group).

Statistical analysis

All statistical analyses were performed using the JMP 13.0 (SAS Institute Inc. Cary, NC, USA) software.

Data are shown as absolute frequencies, percentages, median with a range and mean ± standard deviation, where appropriate. The Shapiro–Wilk’s test and the visual investigation of data with histograms were used to assess the normal distribution of the data. All significant differences between pre- and postoperative geometric measurements were analysed by means of the Paired-samples t-test. Comparisons between different groups of devices and the various pathologies were performed individually using the one-way analysis of variance for unequal sample
Table 2: Measurements for the whole group of patients

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Preoperative</th>
<th>1-Month follow-up</th>
<th>1-Year follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (mm), mean ± SD</td>
<td>382.7 ± 48.7</td>
<td>388.1 ± 50.7; P = 0.010</td>
<td>395.1 ± 47.7; P = 0.001</td>
</tr>
<tr>
<td>AR-LSA (mm), mean ± SD</td>
<td>114.1 ± 18.7</td>
<td>117 ± 19.3; P = 0.02</td>
<td>119.7 ± 17.9; P < 0.001</td>
</tr>
<tr>
<td>DsAo (mm), mean ± SD</td>
<td>190.51 ± 79.90</td>
<td>192.51 ± 74.64</td>
<td></td>
</tr>
</tbody>
</table>

Centreline curvature × 10 (1/mm), mean ± SD

P1	0.22 ± 0.08	0.27 ± 0.16; P = 0.011	0.4 ± 0.2; P < 0.001
D1	0.09 ± 0.063	0.15 ± 0.12; P = 0.004	0.23 ± 0.13; P < 0.001
TA	0.18 ± 0.02	0.18 ± 0.02; P = 0.12	0.21 ± 0.04; P = 0.04
AsAo	0.19 ± 0.04	0.21 ± 0.04; P = 0.02	0.24 ± 0.08; P = 0.05
ER	0.20 ± 0.04	0.19 ± 0.03; P = 0.004	0.20 ± 0.04; P = 0.06
DsAo	0.11 ± 0.05	0.12 ± 0.07; P = 0.090	0.18 ± 0.07; P = 0.02

Outerline curvature × 10 (1/mm), mean ± SD

| P1 | 0.32 ± 0.23 | 0.49 ± 0.37; P = 0.01 | 0.5 ± 0.18; P = 0.04 |
| D1 | 0.11 ± 0.06 | 0.18 ± 0.09; P = 0.04 | 0.41 ± 0.04; P = 0.04 |

ASAo: ascending aorta; DsAo: distance from the AR to the proximal edge of the left subclavian artery; D1: distal; DsAo: distance from the left subclavian artery to the distal landing zone; DsAo: descending aorta; ER: endografting region; P1: proximal; SD: standard deviation; TA: total aorta.

sizes. Univariate correlations were examined using the Pearson's correlation coefficient. P-values <0.05 were considered statistically significant in all statistical tests. No correction for multiple testing was performed, thus all significant values should be interpreted with caution.

Although the pipeline we proposed allowed us to minimize the users' interaction, the semiautomatic segmentation phase of the vessel could potentially lead to slight measurement differences. Therefore, to validate the obtained results, 2 independent, skilled observers performed segmentation of CTA images and subsequent centreline extraction and measurements, and one of them conducted it twice, allowing for interobserver and intraobserver variability analysis using the intraclass correlation coefficient (ICC). The results were presented with the 95% confidence interval (CI).

RESULTS

Study subjects

Altogether, 41 endografts corresponding to 3 different types of devices were deployed for 22 procedures: 10 patients (45%) received the Low-Profile Zenith Alpha endograft (Cook, Bloomington, IN, USA), 7 (32%) received the Relay NBS endograft (Bolton, Barcelona, Spain) and 5 (23%) the Gore C-TAG endograft (W.L. Gore and Associates, Flagstaff, AZ, USA).

Technical success was achieved in 100% of cases. No intraoperative deaths, paraplegia or other major complications occurred. The following complications were observed during follow-up: 1 case of type Ib endoleak at 1-month follow-up, 1 case of asymptomatic retrograde type A aortic dissection (rTAAD) revealed by 1-month CTA which required reintervention, 1 case of aortic dissection on the distal landing zone at 3-month follow-up resolved by open repair and 1 case of pseudoaneurysm with aortic rupture on the distal landing zone at 1 year of follow-up with required endovascular reintervention. Two deaths occurred within the 1-year follow-up due to complications after reintervention. Of these 2 patients, 1 died from sepsis after open repair for rTAAD and another patient died 2 months after reintervention for aortic rupture.

Analysis of geometrical remodelling

One-month results. The values of computed geometrical quantities regarding both pre- and postoperative aortic centrelines are reported in Table 2 (the total group of patients), Table 3 (the Z0 group) and Table 4 (the Z1–2 group). The percentage of the endograft coverage CL was 60 ± 17 and 1.8 ± 0.7 endografts were used per patient. Although not statistically significant, longer segments of the aorta were stented in subjects in the Z0 group compared to those in the Z1–2 group (65 ± 20% vs 56 ± 15%, P = 0.1).

After hybrid repair, the centreline length significantly increased (P = 0.01) for the whole group of patients, albeit to a rather small degree, i.e. 1.35%. Such a change in length was statistically significant in the Z0 group (P = 0.04) alone, showing an average increase of 2.3%; conversely, the Z1–2 group did not show centreline lengthening (P = 0.1).

The degree of pointwise curvature at the endograft landing points was assessed numerically (Fig. 4). Just 1 month after treatment, centreline local curvature was significantly greater in both P1 (P = 0.011) and D1 (P = 0.004). Considering the Z0 group, the increase in curvature in P1 was detected even if no statistical significance was reached (P = 0.06), whereas centreline local curvature significantly increased (P = 0.04) in the distal landing zone D1. With regard to the Z1–2 group, a significant increase in the curvature was found in both the P1 (P = 0.03) and the D1 (P = 0.02) zones.

Similarly, the pointwise curvature of the surface outerline (Fig. 4) significantly increased in P1 (P = 0.01) and D1 (P = 0.04) for the total group of patients. No statistical significance was reached for the Z0 group even if an increase of approximately 40% of curvature values was detected in P1 (P = 0.055), whereas a significant increase was observed on both P1 (P = 0.01) and D1 (P = 0.03) when the Z1–2 group was considered.

Following hybrid repair, the centreline mean curvature showed a significant increase (+7%) in the AsAo (P = 0.02) and a significant decrease (-3.3%) in the ER (P = 0.004). Regarding the mean curvature values in group Z0, a statistically significant increase (+14.5%) in the mean curvature was observed in the AsAo (P = 0.008) together with a decrease (-3%) in the mean curvature in the ER (P = 0.05). For group Z1–2, a significant reduction
The analysis performed at 1-year follow-up confirmed the remodelling trend of the aorta. In particular, as concerns the centreline length, a mean increase of +12.3 mm was observed when compared to preoperative configuration. At 1-year follow-up, values of pointwise curvature at proximal and distal landing zones confirm the increase already observed at 1-month follow-up; the same applies with the mean curvature increase in the unstented regions of both the ascending aorta and the descending aorta.

Intraobserver and interobserver reproducibility analyses

Intraobserver and interobserver reproducibility analyses were computed by the ICC. The intraobserver ICC index resulted in 0.98 (95% CI 0.97–1.00) for length measurements. An interobserver analysis showed an ICC index of 0.97 (95% CI 0.97–0.98) for length measurements. These results indicated an excellent intraobserver agreement and an interobserver agreement for length measurements.

DISCUSSION

The endovascular treatment of aortic diseases involving the thoracic area presents several anatomical challenges (i.e. a complex 3D anatomy and the presence of supra-aortic vessels).

In particular, the high variability of the aortic arch anatomy [6, 11], which is further modified by the pathologies [12], leads to a
specific adaptation between the endograft and the aortic wall depending on each type of morphology.

Therefore, with the currently available thoracic endoprostheses, a total endovascular repair of the aortic arch requires devices that need to be customized for each patient’s anatomy and pathological condition, and often surgical left subclavian artery revascularization is required.

Thus, the hybrid procedure of the aortic arch, which includes supra-aortic vessels transposition to obtain an adequate proximal landing zone for TEVAR in zones 0, 1 and 2, has proved to be an effective alternative, especially in high-risk patients, in an effort to reduce perioperative death and complications related to open surgical repair [13]. However, the long-term outcomes of the hybrid treatment still remain a source of concern, and severe complications could occur during follow-up [14]. When passively bent inside a highly curved artery as the aortic arch, the endograft exerted a spring-back force at the proximal and distal ends due to the inherent tendency to recover its original straight status [15]. As already postulated, this spring-back force could cause an increase in stress on the outer wall, especially at the endograft landing zones, ultimately leading to endograft-related vessel injuries [16].

Figure 4: Pointwise curvature changes on centreline and outerline. Curvature changes at the proximal (P1) and the distal (D1) landing zones between preoperative and postoperative configurations are highlighted. The left column concerns the centreline values, whereas in the right column, the vessel outerline is considered. Both lines are coloured with respect to the pointwise curvature value: colour scale legend ranges from blue (minimum value) to red (maximum value).
The aim of this study was to analyse the geometric changes of the aortic arch after the hybrid treatment, with particular focus on the endograft landing zones, attempting to enhance the understanding on the possible reasons for the development of device-related complications.

Our results indicated that a hybrid treatment modifies the morphology of the aortic arch tract, with both a significant elongation of the vessel and an increase in the pointwise and mean curvature.

In particular, with regard to the centreline length, a mean increase of 5.3 mm ($P = 0.010$) was already observed at 1 month after the treatment and it increased to +12.3 mm ($P = 0.001$) at 1-year follow-up; this result is consistent with the outcomes reported by Nauta et al. [17] and Naguib et al. [18].

After the hybrid treatment, the local curvature of the centreline was significantly greater in the endograft proximal landing zone compared to the preoperative configuration, which supports the findings by Midulla et al. [19]. Moreover, we also observe a significant increase in the centreline local curvature at the distal fixation zone, which for no comparative results can be found in the literature.

The significant increase in centreline curvature and outerline curvature at endograft landing points reveals the tendency of the endograft to spring back to its original straight status, as already curvature at endograft landing points reveals the tendency of the

significant increase in the centreline local curvature at the distal fixation zone, for which no comparative results can be found in the literature.

CONCLUSION

In conclusion, we have demonstrated that the hybrid treatment is associated with a significant elongation of the vessel and a significant increase in curvature on the AsAo and on the endograft landing zones, which could be predictive of the development of device-related complications. This issue reveals the need for further investigation into more conformable and dedicated endografts, or even precurved endografts, for different thoracic aortic diseases.

Future studies involving the analysis of diameter changes and its correlation with aortic centreline elongation, endograft oversizing and radial force on the proximal and the distal landing zones should be performed [27].

Conflict of interest: none declared.

REFERENCES

