Parallelizing a finite element solver in computational hemodynamics: A black box approach

F Auricchio¹,², M Ferretti¹, A Lefieux¹,⁵, M Musci¹, A Reali¹,²,³, S Trimarchi⁴ and A Veneziani⁵

Abstract
In the last 20 years, a new approach has emerged to investigate the physiopathology of circulation. By merging medical images with validated numerical models, it is possible to support doctors' decision-making process. The iCardioCloud project aims at establishing a computational framework to perform a complete patient-specific numerical analysis, specially oriented to aortic diseases (like dissections or aneurysms) and to deliver a compelling synthesis. The project can be considered a pioneering example of a Computer Aided Clinical Trial: i.e., a comprehensive analysis of patients where the level of knowledge extracted by traditional measures and statistics is enhanced through the massive use of numerical modeling. From a computer engineering point of view, iCardioCloud faces multiple challenges. First, the number of problems to solve for each patient is significantly huge – this is typical of computational fluid dynamics (CFD) – and it requires parallel methods. In addition, working in a clinical environment demands efficiency as the timeline requires rapid quantitative answers (as may happen in an emergency scenario). It is therefore mandatory to employ high-end parallel systems, such as large clusters or supercomputers.

Here we discuss a parallel implementation of an application within the iCardioCloud project, built with a black-box approach – i.e., by assembling and configuring existing packages and libraries and in particular LifeV, a finite element library developed to solve CFD problems. The goal of this paper is to describe the software architecture underlying LifeV and to assess its performance and the most appropriate parallel paradigm.

This paper is an extension of a previous work presented at the PBio 2015 Conference. This revision extends the description of the software architecture and discusses several new serial and parallel optimizations to the application. We discuss the introduction of hybrid parallelism in order to mitigate some performance problems previously experienced.

Keywords
Computational hemodynamics, HPC, finite elements, hybrid parallelism, software optimization

I Introduction
Scientific computing during the last 20 years has been extended from traditional fields such as civil, aerospace and mechanical engineering, to new research topics related to sports, the environment and life sciences. After taking advantage of the traditional expertise, these new fields have raised exciting new challenges, often related to the impact of their effective solution that, beyond the technical aspects, could reach out to the entire society. This is the case of computational fluid dynamics (CFD) in the study of cardiovascular diseases. As a matter of fact, an accurate quantitative analysis of hemodynamics in patients, based on numerical simulations, has provided a terrific insight into physiopathological dynamics, with a potential impact on diagnosis, prognosis, and ultimately on all clinical practice.

¹University of Pavia, Pavia, Italy
²Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI-CNR), Italy
³Technische Universität München, Institute for Advanced Study, Germany
⁴IRCCS Policlinico San Donato, Italy
⁵Department of Mathematics and Computer Science. Emory University, USA

Corresponding author:
Mirto Musci, Laboratorio DCA, Department of Computer Engineering, University of Pavia, Via Ferrata 4, 27100 Pavia, Italy.
Email: mirto.musci@unipv.it
In spite of a mature amount of mathematical background (Formaggia et al., 2009) and of many successful proofs of concept proving the previous statement, the massive penetration of medical practice by scientific computing tools is not yet a reality. There are several reasons for this. At a strict scientific level, the computational challenges raised by a patient-specific simulation involves image processing, massive numerical approximations featuring huge algebraic problems and appropriate post-processing procedures. Moreover, the entire work pipeline requires computational facilities that are not typically hosted by healthcare institutions; on the other hand, time requirements due to the large number of patients usually involved, as well as possibly specific emergency situations, demand for high computational efficiency. Altogether, these aspects still challenge mathematicians and computer scientists to search for new efficient numerical methods (Alvarez et al., 2015; Perotto et al., 2015) as well as the effective exploitation of parallel architectures – local or remotely located, as in the case of cloud computing (Slawinski et al., 2012; Villa, 2012; Passerini et al., 2014).

All these aspects are becoming part of a new – somehow groundbreaking – concept recently introduced as a breakthrough, Computer Aided Clinical Trials (CACT). These are clinical studies – i.e. extensive investigations of large volumes of patients as the ultimate step to assess the etiology of a disease as well as the effect of a therapy, in a controlled environment with an enrolment of patients strictly regulated by specific protocols – where numerical simulations systematically provide support to enhance the knowledge extracted by traditional analysis. The iCardioCloud Project is a pioneering initiative founded by Fondazione CaRiPLo, Italy, working in this direction. As a matter of fact, it aims at the definition and establishment of a consolidated pipeline for the routine numerical analysis of patients affected by aortic diseases presented at the Hospital IRCCS San Donato in Milan, Italy.

The work-line starts with the acquisition of images and measurements of the simulation process, finalized by the delivery of charts, diagrams and tables that describe quantitatively the patient status in terms of quantities only partially measurable, including velocity, pressure, wall shear stress, etc.

More precisely, the procedure consists of three steps.

1. **Pre-processing** includes image elaboration to obtain a 3D patient-specific geometrical model, the preparation of this model for the numerical simulation (the so-called *meshing step*) and the extraction of any data to be used in the numerical simulation from available measures.

2. **Problem solving** is the core of the procedure, where appropriate mathematical models fed by the patient-specific data obtained at the previous step are applied to extract more knowledge as the result of physical principles and constitutive laws. More specifically, the equations that are solved for the aortic diseases are the so-called *incompressible Navier-Stokes equations* (NSE), that describe the behavior of a fluid like blood under the conditions prescribed by patient-specific data. This is the most intensive step in terms of computational cost.

3. **Post-processing** is the final step: the results are collected and represented in forms that allow easy translation from mathematical to clinically significant information.

The present paper is clearly concerned with the second step. The NSE represent a challenging problem both in terms of mathematical theory and numerical approximation. In particular, an accurate approximation of the NSE requires the repeated solution of linear systems of a size of about 10^7 equations for many time steps within an interval spanning a few heart beats.

The iCardioCloud team basically resorts to the finite element library called LifeV Lif, a joint initiative of different groups, including the CMCS Center at the Department of Mathematics of EPFL, Lausanne (CH), the Laboratory MOX at the Department of Mathematics of the Politecnico di Milano (IT) and the Department of Mathematics and Computer Science of Emory University, Atlanta (GA-USA).

The library is intended to be a general purpose tool for the approximation of partial differential equations with the finite element method. However, it has a strong and established record of publication in the field of bio-fluid dynamics. In particular, in Passerini et al. (2013) the library has been successfully validated against a benchmark proposed by the US FDA within the Critical Path Initiative (Hariharan et al., 2011; Stewart et al., 2012).

Since the beginning, LifeV has been Object Oriented, developed in C++ with advanced programming paradigms. In particular, since 2006 LifeV has been developed for parallel environments, mainly resorting to pure OpenMPI. For this reason, it is a natural candidate for the massive use of CACT, as the iCardioCloud project demonstrated (Auricchio et al., 2013, 2014; van Boegerijen et al., 2014).

However, the assessment of performances on parallel architectures is critical for the successful adoption of the tool on a routine basis. This paper gives a contribution in this direction, following up previous work presented at the PBio 2015 conference in Helsinki (Auricchio et al., 2015). We investigate the efficiency of the solver and discuss parallel paradigms to maximize the performances, moving from the coarse level profiling in Auricchio et al. (2015), that identified modules to be customized and specific processor level
optimizations. In our previous paper we indicated a hybrid shared memory and message passing approach as a possible solution to mitigate the performance pitfalls. This option is explored here.

More precisely, Section 2 describes the processing component of the iCardioCloud project and introduces the structure of LifeV. Section 3 presents a case study of aorta hemodynamics, to showcase some performance benchmarks of a hemodynamics application on two different parallel systems. The two systems are a small local cluster and the CINECA FERMI (Fer) BlueGene/Q installation in Bologna (Italy). Section 4 discusses the improvements to the code carried out in this work: the usual compiler and serial optimizations and the introduction of hybrid parallelism with the openMP approach. A discussion of the future perspectives on the project, and the many challenges that lay in the way of a full hybrid and efficient implementation, is presented at the conclusion.

2 Architecture

In this section, we provide a short introduction to the numerical procedure required to analyze a patient within the iCardioCloud workline and address some specific feature of the LifeV library.

2.1 The numerical approximation procedure

Partial Differential Equations of interest in real problems seldom admit an explicit analytical solution and numerical approximation procedures are in order. Among other methods, Finite Elements (FE) feature a strong mathematical background. As a matter of fact, the theory of FE has been systematically completed and organized in a “Periodic Table” (femtable.org). The mathematical foundations are critical to assess the accuracy and overall performance of the method for problems of real interest. The method is based on the so-called weak or integral formulation of the problem – the natural formulation descending from the virtual work principle. Moving from this formulation, the rationale is to split the region of interest in regions or elements where the solution is assumed to be polynomial. This allows representation of the approximate solution as a linear combination of polynomial basis functions with local support: i.e., they are nonzero only on a limited small region of the domain of interest. This feature has many advantages: in particular, (a) the code organization may be based on a “local-to-global” perspective where local contributions to the problem are first computed on a local basis and eventually mapped to the global problem; (b) the global approximating problem obtained by this choice is typically a sparse algebraic system, where – after suitable linearization procedures – the associated matrix has just a small fraction of the total entries non-zero, with a huge storage saving. After the algebraic system is obtained, it is conveniently solved by appropriate methods of numerical linear algebra. This operation needs to be repeated at each time step of a temporal discretization for unsteady problems.

The number of subdivisions of the region of interest into elements is relevant to (a) the accuracy of the solution and (b) the computational cost. More elements lead to a more accurate solution, but larger algebraic systems are generally more expensive to solve. The number of elements, as well as the degree of polynomials selected to represent the solution, need to be carefully selected as a trade-off between accuracy and computational cost, depending on the application at hand and the computational facilities available. It is worth noting that in CACT the accuracy required is basically associated with the clinical application, and the quality of numerical solutions must guarantee an accurate understanding of the situation of the patient to be translated into clinical action. Therefore, in many cases accuracy need not be pushed to extreme limits, as far as doctors correctly interpret the results and take the consequent actions – in favor of rapid computations compatible with the clinical routine. The literature dedicated to the FE is extremely large and it is not possible to provide an exhaustive bibliography. Interested readers may refer, e.g., to Hughes (2012), Elman et al. (2005) and references therein.

In the applications relevant to iCardioCloud, we need to solve the Navier-Stokes Equations. These are the equations that describe velocity and pressure in a region of interest, as the result of the application of basic principles (conservation of mass and momentum) and empirical constitutive laws – for instance, for describing the blood rheology. These equations raise some specific challenges, as the three components of velocity and pressure are computed together, and the polynomial degree of interpolation for the velocity depends on that for pressure. This implies that the size of the algebraic system to solve rapidly increases. In the application of interest for iCardioCloud a typical size is of the order of 10^7. In addition, as for any unsteady nonlinear problem, these systems need to be assembled and solved at each time step, spanning a few heart beats for a number of steps on the order of 10^4.

In aortic diseases, the high velocity induced by the heart pumping action generally triggers dynamics qualified as highly disturbed or even turbulent in some (typically pathological) cases. This requires an extra effort that can lead to finer reticulations, or additional equations that properly describe the energy cascade and the effects of disturbances from the small scale (not resolved) to large ones. For aortic flows, the latter approach in the framework of the so called Large Eddie Simulation, has been proved to be effective and it is used in iCardioCloud (Bertagna et al., 2015).
This short summary points out the significantly high computational effort required by a patient-specific analysis. For the sake of clarity, here we list the required steps:

1. geometry tessellation or meshing;
2. time loop (from three to five heart beats; each is in turn split into an order of thousands of steps):
 (a) Assembly the matrix of the algebraic problem with a local-to-global approach;
 (b) Solve the algebraic problem;
 (c) Store the solution (when needed).

The LifeV library is mostly concerned with the Assembly step, while the solution of the algebraic problem is outsourced to available libraries. In particular, the Trilinos Library is used as the default choice. The assembly step consists of a series of procedures to: (i) compute integrals of the basis functions properly differentiated for the specific problem to be solved; (ii) map each integral from a local computation on a reference element to the global problem. Both the assembly and solving steps greatly benefit from parallel architectures, as we detail in the next section.

2.2 Processing

We summarize hereafter the sequence of steps performed to solve the problem with emphasis on the assembly step and its parallel framework. For a full description of these aspects, the reader is referred to the website lifev.org and to Deparis. Once the reticulation of the domain of interest is available and all the specifications of the problem to solve are available, all the MPI processes load the global mesh. Then we perform the following steps.

1. The mesh is partitioned in \(N \) parts by using ParMETIS. Here \(N \) denotes the number of processes or computational units. ParMETIS is a parallel library to partition unstructured graphs based on the METIS library. The guideline of partitioning is to guarantee a balanced workload among the different processors, including in this the solution time of each processor as well as the communication time. This is therefore a critical step, since the quality of this decomposition has a major impact on the overall performance. At the end of the partitioning procedure, each process retains only the associated partition.

2. Assembly. In this step the library assembles the algebraic system as dictated by the mesh and the choice of the degree of the polynomial functions. Notice that the assembly is performed simultaneously also for the vector that forms the right-hand side of the algebraic system. Each computational unit loops over the elements (e.g. triangles in 2D) assigned by ParMETIS in the previous step. Each local loop on elements can be done in parallel, without communication. The loop – as mentioned above – requires the numerical solution of integrals: (a) each element is referred to a template element where the integrals are easily computed (Pietro and Veneziani, 2009); (b) the contribution brought by each element is then mapped to the global level by constructing a matrix for each process – this is called local assembly; (c) after local assembly, a method called GlobalAssemble manages the communication and constructs the pattern of the global matrix, i.e. the map of the nonzero entries in the matrix. The amount of communication in the global assembly depends on the granularity of the decomposition. The Epetra method of the Trilinos library handles all of the underlying complexity.

3. The matrix/right-hand side pair obtained after assembly typically does not include the boundary conditions. They are properly and conveniently included at the end of assembly, to avoid conditional jumps inside the assembly loop over elements to select boundary degrees of freedom. The inclusion of boundary conditions typically entails a correction of a low number of rows of the matrix and the right-hand side.

4. Solver. The solution of the linear system (described by the global matrix) is typically performed by iterative methods. The number of iterations is managed (and minimized) by creating simplified linear problems (called preconditioners) whose solution drives the solution of the problem at hand in a fast way. Ideally, the number of preconditioned iterations when solving a linear system should be independent of the number of processors. LifeV treats the algebra solver as a black box operated by Trilinos, where OpenMPI is used to distribute the computations over the system. Note that the solver decomposition is generally different from the one used in the assembly step. The interested reader may refer to Heroux for the documentation of the Trilinos library.

5. Finally, the solution is exported and stored in parallel by using the HDF Format so as to minimize the slowing due to the disk writing of large vectors Deparis.

It is worth repeating that the matrices of the algebraic problem are sparse, i.e. only a few nonzero entries are present. For this reason, matrices are conveniently stored in compact format, such as Compressed Row Storage (CRS), where only the nonzero entries are tracked. The CRS matrices and the corresponding unknown vectors are properly distributed among the processes thanks to Epetra.
3 Case study: hemodynamics of the aorta

In this section we propose a case study to analyze the behavior of a LifeV hemodynamics application in a real scenario. In particular, we chose a case study about the blood flow in the aorta of a post-operative patient. From a mathematical standpoint, as already discussed above, the problem is modeled with incompressible NSE. Developing a FE solution for the NSE is a well-studied and complex topic which is outside the scope of this paper. For further information, one may refer to Landau and Lifshitz (1987) for a physics standpoint introduction to the NSE, or to Elman et al. (2005) for a discussion of FE methods for the NSE, the numerical method upon which the LifeV-based application is based, and thus it follows the general model depicted in Section 2.

The case study presented here is extracted from Auricchio et al. (2014), where it is properly discussed from both engineering and medical points-of-view.

Nevertheless, we provide here a short discussion of the issues related to the discretization and resolution of the NSE, as well as the test problem used in this work. The geometrical input data of the case study is taken from clinical data and it is composed of 6.7 million of tetrahedra (see Figure 1). The method used is the classical Nodal Lagrange Finite Element method. The solvability and stability of the system rely on a careful choice of the polynomial approximations of the velocity and the pressure. As a matter of fact, we use a piecewise continuous linear approximation for the velocity field, stabilized by a quadratic bubble, and thus the number of degrees of freedom for the velocity field is around 23 million, and a piecewise continuous linear pressure, and thus 1.2 million degrees of freedom for the pressure. As a consequence, the global system has 24.2 millions degrees of freedom. By no means does such a description represent the number of floating point procedures used to solve the problems in the system (see Braghiroli (2014) for a presentation of the problem using LifeV, but with a different Navier-Stokes solver). Indeed, with such a larger linear problem it is not possible to use direct methods, such as Gauss-Jordan. Instead, the code uses an algebraic splitting approach, called High Order Yosida. It is out of the scope of the present work to present in detail the algebraic splitting strategy used in this work. We want to point out that the required time for one time step heavily depends on, in particular, the Reynolds number of the problem (and associated stabilization strategies), the size of the elements, the time stepping, the polynomial order used to approximate the various fields, and, obviously, the time integration schemes and the iterative solver technique. Interested readers may read Villa (2012), and the literature cited therein, in particular Veneziani (2003). Regarding boundary conditions, the inflow flux was obtained from the same patient from phase contrast Magnetic Resonance Imaging. More precisely, the inflow flux is the integration of the projection of the velocity field onto the normal plane, which was selected by the radiologist. On the other hand, the outflow boundary conditions were modeled using a three-element Windkessel system. The parameters have been taken from the literature (Kim et al., 2009). Obviously, the choice of boundary conditions also impacts the conditioning of the global system, in particular the outflow ones. However, these critical points are strictly mathematical and, therefore, should not impact the parallelization strategy. As a consequence, to keep the mathematical aspects out of our concern, we maintained fixed parameters for all our test problems, with the single exception of the number of cores. Consequently, our main concern in the present work is the asymptotic behavior of the code, rather than the absolute results.

The analysis was conducted in two different testing environments. The first is a relatively small cluster, hosted at the University of Pavia. The second is the FERMI Fer supercomputer (a IBM BlueGene/Q) at CINECA in Bologna, Italy. On each machine we performed two different sets of tests. The goal was to assess the performance and the scalability of the processing steps of LifeV, and especially the assembly and solver phase.

3.1 Local cluster

The first batch of tests was run on a cluster of four AMD Opteron 6272 nodes running at 2.1 GHz. Each

![Figure 1. Snapshot of the mesh used for the test problem.](image-url)
node has four CPUs, each with 16 cores, for a total of 64 cores and 252 GB of RAM per node. Overall, the cluster has 256 cores and about 2 Tb of RAM available. Each node is connected to the others through a Gigabit Ethernet switch.

In the following we present two figures which show, respectively, the performance of the assembly and the solving step of the blood flow analysis of the case study (see Section 2.2). Please note that all data are the average of 20 consecutive runs, where the first is discarded because it includes some initialization costs. Figure 2 shows the scalability results for the assembly phase on the local cluster. By analyzing the figure, it is clear that the assembly phase scales very nicely up to 64 cores. We can draw the same conclusions even when considering different distributions of the computation across the entire cluster. Nice scalability results, as shown by the differently colored lines in the figure, hold in fact either when using a single machine and even when using the four computational units at the same time. Unfortunately, the scalability quickly degrades if the number of cores becomes larger than 64. Eventually, after 128 cores, the overall execution times even start to increase. The reason for this behavior is due to the high ratio of communication time over computation time, which is overemphasized by the interconnection network of the local cluster: clearly, a simple Gigabit Ethernet is not enough to keep up with the high volume of communication required by applications such as the case study.

Figure 3 shows the scalability results for the solving phase on the local cluster. Analyzing the figure, it is clear that the solver does not scale very well on the local cluster; we are sure that the lack of scalability is not due to the internal implementation of the Trilinos solver, as proven by the more satisfying results described in the following section on the FERMI supercomputer. To understand the reason for this behavior, it is also important to note that we obtain better performance for the solver when the computation is distributed among different nodes (at least up to 64 total cores). Remember that the computations in the solver are mostly floating point operations and that the Interlagos (AMD 6200 series) architecture shares each floating point unit between two cores: if we use fewer cores on each node we can easily improve the floating point performance; moreover, fewer processes on a node also means less contention for the memory bus. These two hardware limitations provide a huge hint about the lack of scaling.

Moreover, as we shall see later on in Section 4.1, more satisfactory results in the solver scalability were obtained using a serially optimized version of the code, which is able to fully exploit the floating point units with efficient vectorization.

Finally, we have analyzed the behavior of the application using the TAU profiler TAU. Figure 4 shows the percentage of the overall execution time that is spent in communication as the number of cores increase. Similarly to the previous graphs in this section, different distributions of the workload across the local cluster are analyzed. The figure shows that the percentage increases more than linearly when we use more than one node; in other words, the application becomes communication-bound, and this is coherent with the unsatisfactory scalability results discussed above. These
results and can be explained with the inadequacy on the interconnection network. Indeed, the impact of communication remains more or less constant when using only one node.

3.2 FERMI supercomputer

The local cluster is a necessary tool for evaluating the development of the iCardioCloud project. However, the sheer number of hemodynamics problems and the time requirement of clinical applications demand a more drastic approach. To understand the performance on the hemodynamics application on a high-end machine, we repeated the experiments described in the previous section on the FERMI supercomputer. The main difference in the set-up of the experiment is that we had to partition the input mesh using an offline partitioning strategy. The reason is that the amount of memory available to each node in the FERMI architecture is smaller than the size of the mesh and each thread has to load the whole mesh at the beginning of the application to proceed with the partitioning. On the contrary, with offline partitioning we provide the mesh already divided and thus each thread only load its part of the mesh. However, this process does not impact on the performance in a significant way, as offline partitioning is done only once and off-line; to be fair, the results on the local cluster in the previous section did not include the cost for the initial online partitioning.

This time we condense in one figure the results for both the assembly and solving steps. All data are the average of 10 executions, expressed in seconds. Again, the first execution is discarded to discard the initialization time.

Figure 5 shows that both phases, and thus the overall application, scale very nicely up to 1024 cores on FERMI. On increasing the available number of cores, however, only the solver performance has any benefit, while the assembly quickly becomes the bottleneck of the application: in the case of 4096 and beyond it completely dominates the execution times.

Having analyzed the case study for both architectures, we can compare the results presented in this section to the ones presented in Section 3.1. First of all, even if the solver did not scale very well on the local cluster, it scales reasonably well on FERMI, up to 2048 cores. The FERMI interconnecting network is better suited to high volumes of communication with respect to the local cluster; indeed the ratio of computation over communication remains constant up to 1024 cores. Moreover, the PowerA2 chip is more optimized for floating point operations with respect to the AMD 6272; in particular, floating point unit is not shared between adjacent cores, while this does happen on the Bulldozer architecture.

Overall, the most critical point is that, as the number of cores increases, the amount of the inter-process communication and synchronization during the global assembly quickly explodes on FERMI. Intuitively, the perimeter of the mesh chunks becomes longer, while the inner volume becomes smaller. The smaller the ratio between the volume of a chunk and the length of its border, the smaller becomes the granularity of the parallel application, up to a point where the communication overhead becomes comparable to the computational time of a single chunk. Due to the relatively small number of cores, this behavior was not observed on the local cluster.

To mitigate the problem, LifeV developers have proposed a new decomposition strategy for the...
computational mesh, but it is not used in our hemodynamics application at present. The approach, called ghost cells, amounts to inflate with replicated data at borders of each computational chunk. In this way, each region needs to communicate less with its neighbors during assembly. Overall this amounts to a reduction of inter-chunk communication. Put in other words, using the ghost cells we can keep the granularity the same and reduce the overhead. The cost of this strategy is twofold: first of all, a relatively small portion of the data — that is, the ghost cells — needs to be replicated across multiple computational units, thus increasing the memory footprint of the application. On the other hand, the solver needs to be modified to account for a different data format in input.

A more complicated alternative strategy is possible: indeed, hybrid parallelism (Section 4.2) could probably improve the overall performance of the application beyond the level of the ghost cells approach.

4 Optimizing the performance

The analysis presented in Section 3 has shown several performance issues for our hemodynamics application. Clearly, these issues have something to do with the parallel paradigm of the implementation, and can theoretically be solved by modifying the paradigm and/or its implementation. For instance, we could introduce hybrid parallelism in the iCardioCloud project. This idea will be fully discussed in Section 4.2.

However, we are not only interested in parallel performance and scalability on supercomputers, but also in the overall execution time. In particular, even if it is relatively small, the local cluster presented in Section 3.1 is extremely important for our day-to-day operations, as it is not easy to obtain a satisfying level of access to more powerful machines. In practice, obtaining good performance on the local cluster is of paramount importance to our research. To this end, we can apply several black-box serial optimizations to the application, which are discussed in Section 4.1.

4.1 Serial optimizations

From a software engineering point-of-view, in the iCardioCloud framework we see LifeV as a black-box, thus the amount of serial optimization we can introduce is limited by our choice not to modify the code in-depth.

As is common with many frameworks, every major revision of Trilinos brings new tools and capabilities to the library. In particular the transition from Trilinos 10 to Trilinos 11 has brought to the table many optimizations; among them, the most significant are the new internal implementations of the solver modules. Unfortunately, our version of LifeV is Trilinos 10 based. Our first task was to upgrade our version of the code to Trilinos 11. Moreover, upgrading to Trilinos 11 is a necessity with a view to the parallel optimization of the application (Section 4.2). Upgrading to Trilinos 11, obviously, also caused us to upgrade (and sometimes substitute) most of the other libraries in the iCardioCloud framework. For instance, we decided to move from the ACML linear algebra library to MKL on the local cluster, as testing showed that the latter had better performance when comparing their respective most recent releases.

The serial optimization also included an in-depth study of possible compile-time optimizations. In particular, we profiled the application to discover that almost 60% of the computation time is spent inside an underlying mathematical library, such as ACML or MKL. Both of these libraries support system-specific hardware instructions. Namely, as we are working on AMD nodes on the local cluster, recompiling the code using the FMA4 vector instruction has the potential to greatly improve the overall performance of the application. In addition, we studied the effect of many other possible compile-time optimizations and selected the best and most stable ones; in particular, we strived to obtain automatic vectorization of the code.

The selected string of optimizations flags on the local cluster is the following: -03 (standard optimization flag), -march=bdver1 (compile optimized code for the AMD Bulldozer architecture), -funroll-all-loops (force loop unrolling; this flag is recommended by AMD), -mfma4 (enable FMA4 instruction set), -mavx and -mprefer-avx-128 (enable AVX instruction set to induce vectorization outside of the already optimized math libraries). A more in-depth discussion of these compiler optimization, can be found in Braghorioli (2014).

To prove the effectiveness of the serial optimizations, we executed several tests on the case study described in Section 3. Table 1 shows in tabular form the same data presented in a synthetic way in Figure 2, but limited to the most interesting scenario in practical applications: that is, due to the results in Figure 4 showing the poor interconnections on the local cluster, we run the application on a single node, exploiting all of its 64 cores. Table 2 is similar to Table 1 but shows the results of the new optimized implementation. All the values are expressed in seconds.

Each row of the two tables shows a different time step of the computation. The measured times are subdivided into each step of processing. As previously, we can safely rule out the first rows in the tables as outliers. First of all, we note that the assembly times seems to be almost the same in the two versions, and thus are unaffected by the serial optimizations. The most interesting result, however, is that the solver takes much less time in the new version of the code. As stated before,
this was expected, as most calls to the underlying mathematical library are performed during the solution of the matrix, and these calls are now heavily optimized.

Averaging the results, we can state that the serial optimizations amount to a measured reduction in the overall execution time of almost 16%, and up to 20% in some cases. Bear in mind that a one-fifth reduction in execution time amounts to several days, while a complete run on a real patient could take up to two weeks of computation. Finally, Figure 6 shows the extremely good scalability of the new implementation on a single node; it seems that the serial optimizations have solved the previous problems about the scalability of the solver (see Section 3.1).

We conclude that the impact of the serial optimizations is quite significant, especially when considering that, due to the black-box approach, we have not modified the internal structure of the code.

4.2 Parallel optimizations

As shown by the analysis presented in Section 3, the assembly phase of the LifeV implementation has serious scalability issues. To mitigate the problem, we discussed the ghost cell approach (Section 3.2). However, another, more radical, approach is possible: that is, to modify the parallel paradigm of LifeV.

At the moment, LifeV processes communicate using a pure distributed memory paradigm. Which means that: (i) the communication overhead is quite high, and (ii) the processes cannot share data without explicit communication. Similarly to the alternate domain decomposition of the ghost cell method, a different approach, based on a shared memory paradigm, would decrease the overhead and amount of inter-process communication of the overall application. In theory, the approach would work for both the assembly and solving phases, and is not mutually exclusive to ghost cells. In general, the disadvantage of the shared memory is that it is required to carefully protect all common

Table 1. Raw data for the 64 cores performance of the case study on the local cluster. “Old implementation” as in the previous version of this paper. Note that these data is the same shown in Figure 2.

<table>
<thead>
<tr>
<th>Run</th>
<th>Assembly</th>
<th>Preconditioner</th>
<th>Solver</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81.14</td>
<td>82.88</td>
<td>70.06</td>
<td>234.08</td>
</tr>
<tr>
<td>2</td>
<td>29.32</td>
<td>36.76</td>
<td>61.96</td>
<td>128.04</td>
</tr>
<tr>
<td>3</td>
<td>29.21</td>
<td>35.98</td>
<td>80.77</td>
<td>145.96</td>
</tr>
<tr>
<td>4</td>
<td>29.57</td>
<td>36.61</td>
<td>67.88</td>
<td>134.06</td>
</tr>
<tr>
<td>5</td>
<td>29.38</td>
<td>36.88</td>
<td>76.53</td>
<td>142.80</td>
</tr>
<tr>
<td>6</td>
<td>29.53</td>
<td>36.60</td>
<td>73.92</td>
<td>140.04</td>
</tr>
<tr>
<td>(etc.)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 2. Raw data for the 64 cores performance of the case study on the local cluster. “New implementation” with compile time optimizations and Trilinos 11 porting.

<table>
<thead>
<tr>
<th>Run</th>
<th>Assembly</th>
<th>Preconditioner</th>
<th>Solver</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.76</td>
<td>36.75</td>
<td>57.73</td>
<td>108.25</td>
</tr>
<tr>
<td>2</td>
<td>37.03</td>
<td>37.49</td>
<td>50.55</td>
<td>125.08</td>
</tr>
<tr>
<td>3</td>
<td>37.15</td>
<td>37.41</td>
<td>50.97</td>
<td>125.53</td>
</tr>
<tr>
<td>4</td>
<td>37.36</td>
<td>37.45</td>
<td>53.45</td>
<td>128.25</td>
</tr>
<tr>
<td>5</td>
<td>37.41</td>
<td>37.56</td>
<td>43.85</td>
<td>118.82</td>
</tr>
<tr>
<td>6</td>
<td>37.73</td>
<td>37.64</td>
<td>43.91</td>
<td>119.28</td>
</tr>
<tr>
<td>(etc.)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Figure 6. Scalability of the new implementation for the case study on a single node of the local cluster. On the x-axis the number of cores concurring to the computation. On the y-axis the execution times in seconds. Both axes use a logarithmic scale.
resources using some form of synchronization (e.g. locks, critical section, etc.).

In the past few years, research has focused on a combination of the two paradigms (distributed and shared memory) to take advantage of both; this approach is called hybrid parallelism. On a many-core machine, such as FERMI, hybrid solutions are almost mandatory to achieve the best possible performance.

Unfortunately, the porting of iCardioCloud to a hybrid approach is far from being easy or time-efficient. The most recent versions of Trilinos 11 support hybrid parallelism thanks to the Tpetra module, which allows the exploitation of hybrid strategies to manage the mesh in a concurrent way. The alternative is Epetra, currently used by LifeV, which is mostly based around a pure MPI, distributed memory approach. The Petra modules are essential because they are the interface to all the other modules of Trilinos, in particular to the linear solvers (see Section 2.2). As discussed in the previous section, we have already upgraded LifeV to work with Trilinos 11. However, the main problem is that, due to the nature of its code, a simple porting of the LifeV source code from Epetra to Tpetra is not feasible.

In fact, LifeV uses a modified and extended version of the Epetra module, which sometimes relies on the details of the internal implementation of Epetra (i.e. the code is not perfectly encapsulated). The main issue is that the MatrixEpetra class, the interface from LifeV to Epetra, makes heavy use of the advanced capabilities of the FECrsMatrix class that are not yet available in Tpetra; thus, it renders, at present, cumbersome the implementation of Tpetra into our LifeV code. Nevertheless, even if the Epetra module lacks the advanced hybrid capabilities of Tpetra (such as support for CUDA, PThreads, TBB, etc.) its data structures actually embed partial OpenMP capabilities, which can be easily activated during compilation.

We ran on FERMI the same test performed in Section 3.2. The results on the local cluster are not shown here, as they are not particularly interesting. In fact, using the hybrid approach on the local cluster has very few advantages and, in some cases, even worse performance. Figure 7 shows the results on the FERMI supercomputer. For a fair comparison, the data still refer to both the assembly and solving stages. On the x-axis the number of cores concurring to the computation. On the y-axis the execution times in seconds. Both axes use a logarithmic scale.

From the figure it is clear that this limited introduction of hybrid parallelism does not drastically modify the asymptotic performance of the application, and the scalability issues have not been solved, as expected. However, we can note that the computational explosion of the assembly phase is less pronounced, and the scalability of the solver has significantly increased. While not conclusive, these data are a clear indication that the hybrid approach is the correct way to improve both the performance and the scalability of a LifeV hemodynamics application.

5 Conclusions

In this paper we have discussed an emerging multidisciplinary research topic, that is using numerical methods to study the hemodynamics of a pathological aorta. In particular, we have described the iCardioCloud framework, which uses a finite element software in a parallel context. iCardioCloud is based on LifeV, a pure MPI parallel library. The overview of the software architecture of a LifeV-based application has shown the potential of this approach, but it has underlined present performance limitations, which will be dealt with in future works.

To validate our assumptions, we have analyzed the performance of a clinical case study with real data on two different systems: a small cluster and a supercomputer. The analysis showed some limitations of the pure MPI approach, such as lack of scalability and overhead of the communication bandwidth.

In the final section we discussed possible solutions to the performance problems: that is, the introduction of a few selected serial optimizations, which allowed us to increase the overall execution time by a significant margin; and the introduction of a new hybrid parallel paradigm. Unfortunately, a full porting of iCardioCloud is extremely time-consuming due to the nature of the
LifeV implementation. However, thanks to a limited introduction of OpenMP in the framework, we have shown the potential merit of such porting.

At the moment, a full, efficient Trilinos 11 hybrid implementation of LifeV is a work in progress.

Acknowledgements

The authors would like to acknowledge CILEA for the support through the LISA project BIO-FSI, and CINECA for providing access to the FERMI supercomputing facility. Finally, the authors would like to thank M. Conti and S. Morganti (image and data processing), C. Trentin (image processing), F. Braghiroli (software engineer), F. Sardanelli and F. Secchi (radiologists) for their contributions.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the European Research Council (project number 259229); Cariplo Foundation (project no. 2013-1179), Regione Lombardia (project number E18F1300030007) and the Ministero dell’Istruzione, dell’Università e della Ricerca (project number 2013-1179), Regione Lombardia (project number 2013-1179), and F. Secchi (radiologists) for their contributions.

References

Heroux M (2016) Trilinos documentation. Available at: https://trilinos.org/about/documentation/.

with particular attention to the bird-beak configuration.

Author Biographies

Ferdinando Auricchio, professor of Structural Mechanics at the University of Pavia. Vice-president of ECCOMAS (European Community on Computational Methods in Applied Sciences and Engineering). 145 publications on referred International Journals, H-Index 35 on ISI, 36 on Scopus. From 2011 very active on Additive Manufacturing and proponent of the University of Pavia Thematic project 3DUniPV: Virtual modelling and additive manufacturing (3D printing) for advanced materials

Marco Ferretti received the Laurea (cum laude) in Electronics Engineering from the University of Pavia (Italy) in 1979. He is full professor since 1994. He lectures on Advanced Microprocessors Architectures and on Data Bases. From 1984 to 1998 he was Chairman of the IAPR TC for Special Purpose Architectures and from 2004 to 2008 he was President of GIRPR, the Italian branch of IAPR. He is Fellow of IAPR and member of IEEE. He is currently in the advisory board of CINECA (that hosts the largest HPC facility in Italy) and in the executive board of CINI. His current research issues are mainly in efficient porting of large codes on HPC facilities.

Adrien Lefieux is a postdoctoral fellow at the department of medicine, division of cardiology, at Emory University, Georgia, USA. He received a master of engineering in mechanics from the University of Technology of Compiègne, France, and a PhD in computational mechanics at the institute for advanced studies of Pavia, Italy. His work focuses on using state of the art numerical methods with application in medicine, with a particular focus on computational fluid dynamics and fluid structure interaction problems.

Mirto Musci is a postdoctoral researcher at the Department of Electrical, Computer and Biomedical Engineering, at University of Pavia, Italy since 2015. He received a masters degree cum laude in informatic engineering in Pavia in 2010, and a PhD in bioinformatics from the same institute in 2014. His current research focus about parallel methods in bioinformatics and HPC in general. In particular, he contributed in the application of computer vision techniques to the retrieval of motifs in the secondary structure of proteins.

Alessandro Reali is Associate Professor of Mechanics of Solids at the University of Pavia, and Fischer Fellow at the Institute of Advanced Study of the Technical University of Munich. He is an ISI Highly Cited Researcher and the recipient, among other honors, of an ERC Ideas Starting Grant, of the IACM Fellows Award, of the IACM Argyris Award, of the AIMETA Junior Prize, and of the ECCOMAS Zienkiewicz Award. His main research interests are isogeometric analysis, advanced constitutive modeling, mixed finite elements, and strong-form (particle and collocation) methods.

Santi Trimarchi is Associated Professor of Vascular Surgery, University of Milan. He is also Director of the Research Center for Thoracic Aortic Diseases and Head of the Section of Vascular Surgery II at Policlinico San Donato IRCCS. The main field of research includes acute and chronic aortic diseases, such as aneurysms and dissection. He is the PI, co-PI and/or co-investigator in several clinical registries and trials. He is co-chair of a PhD aortic research program with University of Michigan (USA) and Utrecht University (the Nederlands). In collaboration with the Department of Engineering and Architecture at University of Pavia, he is also co-chair of the Beta Lab – Biomechanics for Endovascular Treatment of the Aorta.

Alessandro Veneziani is Professor of Mathematics and Computer Science at Emory University, Atlanta (GA) USA. He is also external program Faculty at the Department of Biomedical Engineering at Emory & GA Tech. He was previously appointed as Associate Professor at the Politecnico di Milano, Italy and as Assistant Professor at the University of Verona, Italy. His work is mainly focused on mathematical and numerical models for the Cardiovascular Sciences. In 2007 he was awarded the International Sacchi-Landriani Prize for Young Numerical Analysts in the Field of Partial Differential Equations.