A patient-specific follow up study of the impact of thoracic endovascular repair (TEVAR) on aortic anatomy and on post-operative hemodynamics.

Diego Gallo a, Adrien Lefieux b, Simone Morganti b, Alessandro Veneziani c, Alessandro Reali d, Ferdinando Auricchio b, Michele Conti b, Umberto Morbiducci a

a Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
b Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
c Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
d Institute for Advanced Study, Technical University of Munich, Garching, Germany

ARTICLE INFO

Article history:
Received 12 October 2015
Revised 18 April 2016
Accepted 26 April 2016
Available online 29 April 2016

Keywords:
Bird beak configuration
Morphometry
Computational fluid dynamics
Wall shear stress
Helical flow
Thoracic aorta

ABSTRACT

Thoracic endovascular repair (TEVAR) is a minimally invasive alternative to classical open-chest surgery for pathologies of thoracic aorta such as aneurysms or dissections. It consists of the deployment of one or more endografts to either exclude aneurysms pressurization or seal entry tears of dissection. It is a minimally invasive procedure, yet long-term efficacy is still to be demonstrated and analyzed, depending on the geometry and the consequent hemodynamics and remodeling induced by the intervention. In this paper we consider a TEVAR patient by an extensive computational analysis of pre-op, post-op, and one-year follow up data. We focus on both geometrical features like curvature, torsion and area variations, as well as near-wall and intravascular flow-related quantities (i.e., wall shear stress-based descriptors and helicity). Comparison of the different morphologies indicates a partial restoration of normal flow in the region of interest, even though low WSS are still present with the associated risks. Overall, this study demonstrates the efficacy of quantitative computational tools in understanding the long-term impact of TEVAR.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thoracic aorta is the anatomical portion of the aorta - the main artery of human circulatory system—ranging from the aortic valve to the level of the diaphragm. This region also includes supra-aortic branches supplying brain circulation and it has a key role in the whole circulatory system, integrating the cardiac function by acting as a secondary pump. For these reasons, thoracic aortic diseases, such as aneurysm or dissection, could have dramatic outcomes. Unfortunately, thoracic aortic diseases still remain a global health burden [1], although dramatic progresses have been done in both prevention and treatment, such as thoracic endovascular repair (TEVAR), which is a minimally invasive alternative to classical open-chest surgery. In detail, TEVAR has the final goals (1) to exclude aneurysm pressurization, thus minimizing the risk of rupture, and (2) to seal the proximal entry tear of dissection, triggering a positive remodeling of the diseased aorta. Technically, TEVAR is performed by the endovascular delivery and deployment into the diseased site of one or two endografts, i.e., self-expanding prostheses made of a Nitinol scaffold covered by a polymeric skirt. On one hand the use of TEVAR is encouraged by its unquestionable low invasiveness, on the other hand the limited knowledge of its long term efficacy is still a matter of clinical debate [2]. One of the most frequent causes for early and late stent-graft treatment failure is the anatomical complexity of the aortic arch [3]. In particular, one of the extremities of the device lands at the level of the aortic arch; in case of angulated arches, the stent-graft cannot conform to the arch shape due to its stiffness, only resulting in a partial contact with the aortic wall (malapposition). The lack of apposition of the device to the aortic wall along the arch inner curvature results in the so-called bird-beak configuration, consisting in a wedge-shape gap between the undersurface of the stent-graft and the aortic wall [3]. This configuration affects the clinical outcome after TEVAR, being associated with endoleak, stent-graft collapse and infolding [3].

For treatment planning and long-term outcomes of TEVAR, a crucial role is played by (1) vascular morphology, and (2) the consequent hemodynamics, that is majorly affected by the anatomy. Thus, the investigation of TEVAR impact on aortic morphology and
hemodynamics over time is of paramount importance. Recently, Midulla et al. [4] have analyzed the TEVAR-induced geometrical changes of the aorta by collecting and analyzing CT pre- and post-operative acquisitions of 30 consecutive patients treated by TEVAR. More quantitative morphometric analyses have been developed to characterize the geometry of healthy vessels or to aid endovascular device design [4–6]. As for a well consolidated procedure, the appropriate processing of images followed by computational fluid dynamics (CFD) allows to simulate intravascular hemodynamics to obtain highly resolved blood flow patterns (in space and in time) in patient-specific geometric models. For example, recent studies [7–11] investigated some of the consequences of TEVAR on local hemodynamics immediately after stent-graft implantation resorting to patient-specific computations, mainly focusing on the consequence of possible drawbacks of the surgery.

In the present study, we aim at evaluating for the first time a one-year follow-up study in a real clinical case presenting a bird-beak configuration after TEVAR. In detail, local vascular geometric features like curvature, torsion and area variations are evaluated in the pre-operative geometry and in two post-operative geometries, immediately after the intervention and after one year. In the post-operative geometries, numerical hemodynamic simulations are performed. Both near-wall and intravascular flow quantities are considered and related to the geometric changes, to explore the complex interplay between vascular morphology and hemodynamic and its consequences on aortic remodeling.

2. Materials and methods

The image-based workflow applied to study how anatomic attributes and hemodynamics vary in the follow-up study is illustrated in this section. We briefly document the clinical protocol and introduce our aortic lumen segmentation strategy. Then the computational setting to perform vascular geometric characterization and computational hemodynamics is presented.

2.1. Image-based anatomical models reconstruction

A 51-years old male subject suffering from an asymptomatic post-dissecting thoracic aortic aneurysm was selected for endovascular exclusion. As detailed elsewhere [7], two cTAG stent-grafts (conformable TAG, W.L. Gore & Associates, Inc., Flagstaff, Arizona, USA) were selected for implantation. The proximal stent graft has a diameter of 34 mm and a length of 200 mm; the distal one has a diameter of 28 mm and a length of 150 mm. As for the materials used for the stent graft, Gore TAG devices are composed of a symmetrical expanded ePTFE tube, externally reinforced with a layer of ePTFE or FEP. An exoskeleton consisting of nitinol stents is attached to the entire external surface of the grafts with ePTFE/FEP bonding tape. Further information on the implanted devices can be found at manufacturer’s website (http://www.goremedical.com/tag/). While one year follow-up imaging confirmed the successful exclusion of the aneurysm without endoleak, immediate post-operative imaging clearly highlighted a bird-beak configuration of the proximal prosthesis (Fig. 1, panel A) [7].

Multislice computed tomography (MSCT) was used at three different stages: (1) pre-operative scan performed few days before the surgery (CASE 0); (2) post-operative scan performed immediately after the surgery (CASE A); (2) post-operative scan performed one year after the surgical intervention (CASE B).

Briefly, MSCT was performed, before and after intravenous administration of 100 mL of iodinated contrast material, using a 16-slice unit (150 mAs, 110 kVp; acquisition thickness 5 mm, pitch 1.5; reconstruction thickness 1.2 m), as previously detailed [7]. According to a previously proposed approach (for the interested reader, details regarding the patient and the effective protocol regarding the extraction of the geometries are presented in [5,7]), image segmentation of the three MSCT image datasets and three-dimensional models reconstruction were performed using the open-source software ITK-Snap [12,13], with attention used to properly consider the presence of the stent-grafts in CASE A and CASE B.

Phase contrast MRI was performed one year after the intervention on CASE B using the 1.5T scanner Magnetom Sonata Maestro Class (Siemens, Erlangen, Germany, see [7] for details). In this way the flow rate waveform along the cardiac cycle at an aortic cross-section distal to the aortic valve was obtained, suitable to be used as realistic inflow boundary condition to simulate local aortic hemodynamics (as will be clarified in the following).

On the reconstructed realistic three-dimensional geometries of the subject at the pre-operative stage and at two successive post-operative stages, geometric characterization was performed. Hemodynamic simulations were performed on post-operative geometries.

2.2. Geometric quantitative description

Geometric attributes of the aorta and its branches at the three observational stages were considered for comparison. These attributes are based upon the definition of vessels centerline C as the geometrical locus of the centers of the maximal inscribed spheres in the vascular geometry [13].

In detail, from the 3D surface triangulation of each anatomic model a discrete set of points forming the centerlines was generated automatically using the open-source Vascular Modeling ToolKit (VMTK, www.vmtk.org). Then, we adopted the 3D free-knots regression splines to represent in closed form the continuous centerlines [14]. This choice allowed the reliable calculation of a set of vascular anatomic features, by filtering the noise in the discrete observations of curves C. In fact, as described elsewhere [15,16], an order m free-knots regression spline in three dimensions is a piecewise polynomial of degree m–1, with continuous derivatives of order m–2 at the knots, whose number and position is not fixed in advance but chosen in a way to minimize a penalized sum of squared error criterion [17]. By properly setting the value for m, we obtained (1) an analytical representation of the centerlines continuous up to the derivatives of order 4, and (2) the quantification of their curvature and torsion by differentiation. In general, we remind that curvature κ and the torsion τ of a curve...
C along the curvilinear abscissa s are defined \([13,15]\) as

\[
\kappa(s) = \frac{|C(s) \times C'(s)|}{|C'(s)|^2}
\]
\[
\tau(s) = \frac{|C(s) \times C''(s)|}{|C'(s)|^2}
\]

where primes denote derivatives of the curve \(C\) with respect to the curvilinear abscissa \(s\). As definitions state, curvature \(\kappa\) is the reciprocal of the radius of the circle lying on the osculating plane (i.e., the plane defined by the normal and tangent vector to the curve at each point), while torsion \(\tau\) measures the deviation of the curve from the osculating plane. Over each vascular segment of generic length \(L\) definition (1) was used and the average values of curvature and torsion were obtained as

\[
AC = 1/L \int_0^L \kappa(s)ds, \quad AT = 1/L \int_0^L \tau(s)ds
\]

Moreover, as global anatomic features of vascular segments, bending (BE) and twisting energy (TE), i.e., the energy required to bend and twist a straight line into its curved shape, were calculated as previously defined [18,19]:

\[
BE = L^2 \int_0^1 \kappa^2(w)dw
\]
\[
TE = L^2 \int_0^1 \tau^2(w)dw
\]

where \(w = s/L\) is the normalized curvilinear abscissa.

Among geometric vascular attributes, cross-sectional area \(A(s)\) along the vessel was also considered, where \(A(s)\) was calculated automatically at the generic curvilinear abscissa \(s\) via intersection of a plane normal to the centerline at \(s\) location.

2.3. Computational hemodynamics

For all the cases of interest, we solved the governing equations of fluid motion, where the fluid was assumed to be unsteady, incompressible, isothermal, and homogeneous. In detail, in this application the Navier–Stokes equations in the form

\[
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) + \nabla \cdot \left(\mu \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right) \right) + \nabla p = f,
\]

where \(\rho\) is the density, \(\mu\) the dynamic viscosity, \(\mathbf{u}\) the velocity and \(p\) the pressure, were numerically solved by means of the finite element method and the fluid domain was discretized using tetrahedra. The mesh generation was carried out using the tools available in the VMTK library, selecting elements with uniform edge length. For the considered geometries, the mesh cardinality was about 6.6 millions of tetrahedra. Here mixed P1 bubble-P1 elements were used, providing a piecewise continuous linear interpolation enriched by a cubic bubble (i.e., with null trace on the boundary of the tetrahedra) for the velocity, and a piecewise continuous linear approximation for the pressure. As well known, this choice guarantees that the discretization of the problem is nonsingular, i.e., solvable [20].

The Navier–Stokes equations were solved using the open source C++ library LifeV (www.lifev.org), a parallel finite element solver. As for the applied numerical scheme, the time integration was performed using a second order BDF scheme with an algebraic splitting of the velocity and pressure fields with a Yosida scheme with pressure corrections [21,22]. The convective effects were treated using a streamline diffusion approach [23].

As for boundary condition prescription, different strategies were applied, depending on the nature of the boundary. Phase-contrast MRI data were available, in terms of flow rate waveform, at a cross section slightly distal to the aortic valve in the one-year follow up case (denoted by CASE B in Fig. 1). This flow rate waveform (Fig. 1, panel B) was applied at the inflow section of both CASE A and CASE B. As it is well known, flow rate conditions are “defective” since they are not enough for solving the Navier-Stokes equations and need to be completed either by simplifying assumptions or by special (and expensive) numerical techniques [24]. In particular, following a well-established procedure for ascending aorta, we postulated flat velocity inlet profiles with flow extensions added at the boundary sections to reduce the effect of the defective boundary conditions in the region of interest [25]. Average Reynolds number at the inflow sections was about 1240. Peak Reynolds number at the inlet section dictated the spatial discretization for the models, following the approach adopted in Gallo et al. [26].

In the lack of measured outflow data, a classical three-element Windkessel model was postulated at each outlet section, modeling the impedance of the distal circulation. Technically, the peripheral impedance at each outflow section was represented by two resistances Rp and Rd and one compliance C (Fig. 1 panel B, RCR model). The specific values of those parameters, applied both to CASE A and CASE B, were taken from [27]. The arterial walls were assumed to be non-porous and rigid, correspondingly null velocity conditions were enforced. Finally density and dynamic viscosity were set equal to 1060 kg/m³ and 3.5 cP, respectively.

2.4. Hemodynamic quantitative description

The impact of the applied TEVAR on the aortic hemodynamics after implantation was evaluated by computing both the wall shear stress (WSS) distribution at the luminal surface (which is related to arterial disease) and the intravascular flow structures. Since the natural blood flow in aorta has been demonstrated to be helical [28,29], we focused also on helical flow structures.

The presence of disturbed shear was investigated in terms of luminal distributions of two of the most widely used WSS-based descriptors, i.e., the Time-Averaged WSS (TAWSS) [30,31], and the Oscillatory Shear Index (OSI) [30,32]:

\[
\text{TAWSS} = \frac{1}{T} \int_0^T |\tau_w(x,t)| \cdot dt
\]

\[
\text{OSI} = 0.5 \left[1 - \left(\frac{\int_0^T \tau_w(x,t) \cdot dt}{\int_0^T |\tau_w(x,t)| \cdot dt} \right) \right]
\]

where \(T\) is the overall interval of the cardiac cycle and \(x\) is the position on the vessel wall. In general, low and oscillatory shear stress is considered athero-genic, whereas high shear stress is athero-protective [30,33].

As for the characterization of helical flow, by definition, the helicity \(H(t)\) of a fluid flow confined to a domain \(D\) of a 3D Euclidean space \(R^3\) is given by the integral value of the scalar product of the local velocity \(\mathbf{v}\) and the vorticity \(\omega\) vectors:

\[
H(t) = \int_D \mathbf{v}(x,t) \cdot \omega(x,t) d\mathbf{x}
\]

\[
\text{LNH}(x,t) = \frac{\mathbf{v}(x,t) \cdot \omega(x,t)}{||\mathbf{v}(x,t)|| \cdot ||\omega(x,t)||} = \cos \phi(x,t)
\]

where \(0 \leq \text{LNH} \leq 1\) is the Localized Normalized Helicity (LNH) defined as
has been applied more and more to cardiovascular fluid mechanics \[15,16,35–40\]. LNH is the local value of the cosine of the angle \(\psi(x,t)\) between the velocity and vorticity vectors: the absolute value of LNH ranges between one, when the flow is purely helical, and zero, in general, in presence of reflectional symmetry in the flow. Moreover, the sign of LNH is a useful indicator of the direction of rotation. As a matter of fact, LNH describes the changes in the direction of the rotation of flow inside vessels during the cardiac cycle, because a local right/left-handed rotation can be identified by a change in sign of the local value of LNH.

3. Results

3.1. Geometric description

Local curvature and torsion profiles calculated along models before and at two different stages after stent-graft implantation procedure by applying (1) provide a clear representation of the impact that the stenting procedure has in reshaping the vessel. Figs. 2 and 3 show how the severity of curvature and non-planarity along the vessel does vary as a consequence of the presence of the stent-graft, also highlighting their complex nature and non-uniformity. In particular it can be noticed that

- overall, both average and pointwise values of aortic non-planarity are affected by stent-graft implantation (Table 1). In detail, the pre-op case (CASE 0) features a bi-modal torsion (with peaks of \(3\) mm\(^{-1}\) in the descending aorta, Fig. 3), while CASE A shows a uni-modal tortuosity with a peak value in the opposite direction (opposite torsion). Notably, no peak values for torsion are evident at the late observational stage (CASE B).

The aortic remodelling occurring after the stent-graft implantation is highlighted by the analysis of the correlation between centerline features along the observational window. In particular, Table 2 points out that (1) a moderate correlation still persists for the aortic curvature between pre and post-implantation, (2) on the contrary, correlation is very poor for torsion. These results are confirmed by the analysis summarized in Table 1, where it can be observed how both the bending and twisting energy averaged along the aorta are progressively reduced from pre-to-post observation (from CASE 0 to CASE B), as a consequence of the stent-graft implantation.

The analysis of the variation of the cross-sectional area along the aorta (Fig. 4), limited to the stented region, clearly shows that (1) the presence of the stent-graft progressively decreases the cross-sectional area in the proximal region of the vessel and restores it to more physiologic values (i.e., cross-sectional area increases) in correspondence of the distal stenosis of the stented segment; (2) from immediately after the stent-graft implantation (CASE A) to one year (CASE B) after the intervention, the aorta undergoes an almost uniform expansion, with the variation in the cross-sectional area showing a similar trend (\(r = 0.94, p < 0.01\)) along the vessel. Notably, the stent-graft implantation has also a

Table 1 Geometric analysis of the centerline of pre-operative aorta (CASE 0), post-operative aorta immediately after the surgery (CASE A), and post-operative aorta one year after the surgical intervention (CASE B). The main geometric attribute of the vessel is characterized in terms of average values curvature and torsion, bending and twisting energy.

<table>
<thead>
<tr>
<th>Aorta</th>
<th>Average curvature (mm(^{-1}))</th>
<th>Average torsion (mm(^{-1}))</th>
<th>Bending energy (J)</th>
<th>Twisting energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE 0</td>
<td>0.017</td>
<td>-0.047</td>
<td>0.0044</td>
<td>0.599</td>
</tr>
<tr>
<td>CASE A</td>
<td>0.017</td>
<td>0.014</td>
<td>0.0038</td>
<td>0.171</td>
</tr>
<tr>
<td>CASE B</td>
<td>0.015</td>
<td>0.018</td>
<td>0.0028</td>
<td>0.041</td>
</tr>
</tbody>
</table>

Fig. 2 Three-dimensional reconstruction of pre-operative aorta (CASE 0), post-operative aorta immediately after the surgery (CASE A), and post-operative aorta one year after the surgical intervention (CASE B). Vessels centerline, color-coded with local values of curvature \(\kappa\) and location of torsion \(\tau\) peak values are also presented.

Fig. 3 Aortic longitudinal profiles of curvature \(\kappa\) and torsion \(\tau\). The varying severity of curvature and torsion along vessels highlights the remodelling of the pre-operative aorta (CASE 0), occurring in the post-operative aorta immediately after (CASE A) and one year after surgery (CASE B) as a consequence of stent-graft implantation.

Fig. 4 Visualization of the variation of the cross-sectional area along the aorta from the pre-operative (CASE 0) to the post-operative stages immediately after (CASE A) and one year after surgery (CASE B). The longitudinal profiles of the aortic cross-sectional area are also presented.
positive effect in enlarging the marked lumen reduction which is present at the pre-operative stage (CASE 0), affecting the distal tract of the diseased descending aorta.

3.2. Hemodynamic description

The snapshot of the intravascular flow field provided by the peak systolic instantaneous streamlines clearly highlight more regular fluid structures after one year from implantation (Fig. 5) in (1) the proximal segment of the stented artery, immediately downstream of branching of the left subclavian artery from the aorta; (2) the distal segment of the descending aorta, where a marked lumen reduction was present before stent-graft implantation; (3) the proximal regions of the left carotid artery and of the left subclavian artery. Flow disturbances are observed at the intrados of the aortic arch, in correspondence of the stent malposition responsible of the bird-beak configuration (Fig. 5).

The impact of the implantation on aortic intravascular flow was also investigated by visualizing isosurfaces of LNH (defined by Eq. (8)), averaged in time along the systole and diastole. Adopting threshold values of LNH (± 0.3) for the visualization of counter-rotating helical blood flow structures (positive and negative LNH values indicate counter-rotating helical structures in Fig. 6), the direction of rotation when viewed in the direction of forward movement is clockwise/counter clockwise for positive/negative LNH, respectively), the presence of different topological features can be observed for CASE A and CASE B. In particular, Fig. 6 shows that, along the systole, the counter clockwise rotating structure (negative LNH, blue color) characterizing the aortic flow in the distal segment of the aortic arch and in the descending aorta is larger and more coherent in CASE A than in CASE B. In diastole, helical structures appear less organized than in systole in the entire aortic volume (Fig. 6) at the two different post-interventional stages (according to recent observations [16]), with CASE B presenting in the descending aorta a larger clockwise helical flow structures than CASE A. Based on previous in vivo [28,29] and in silico observations [16,25], helical flow topological structures one year after implantation appear still markedly different than in healthy human aortas.

The analysis of the distribution of the WSS-based descriptors shows that, in consequence of the geometric modification between CASE A and CASE B (Fig. 7), (1) the luminal surface exposed to low WSS (less than 0.4 Pa [33]) at the ascending aorta is wider in CASE B than in CASE A; (2) inside the stent-graft region, where low WSS distribution identify regions more prone to thrombus
formation, the surface area exposed to low WSS is larger in the arch extrados in CASE A and larger in the grafted descending aorta segment in CASE B, the latter presenting a low WSS region localized in the region of the stenosis; (3) in CASE B presence of oscillatory WSS in the ascending aorta is reduced (Fig. 8). The latter circumstance is confirmed by the fact that in the aortic segment proximal to the implanted stent-graft, the luminal surface featuring OSI > 0.4 is diminished in comparison to CASE A. Moreover, low TAWSS and high OSI values characterize the region of the arch intrados where bird-beak is located, both in CASE A and CASE B.

4. Discussion

As recently reported, technological advancements and the growing experience with endovascular interventions have resulted in a progressively increasing utilization for TEVAR [41,42]. In particular, TEVAR has become alternative to open surgery in patients with a high operative risk, and in acutely unstable patients to achieve rapid aortic stabilization. However, the use of TEVAR is associated to the risk of complications that may require, e.g., endovascular or open surgical interventions [41]. In this sense, the use of quantitative morphometry combined with a detailed analysis of local hemodynamics could enrich the monitoring of medium and long term outcome of patients undergoing TEVAR, and support clinical decision when stent-graft complications after primary TEVAR require secondary surgical and/or interventional procedures.

The coupling of medical imaging with CFD has been recently applied to obtain realistic, detailed descriptions of the perturbation of the local hemodynamics as a consequence of TEVAR procedure [7], in particular to get insight into the hemodynamic consequences of the bird-beak effect [7,9,10]. In parallel, the application of imaging tools for TEVAR preoperative screening and follow up has been recently proposed [4,5,7–11,43].

Here we combine quantitative aortic morphometry and multiscale computational hemodynamics for a detailed analysis of the impact of TEVAR procedure both on aortic remodelling and local hemodynamics in a follow up study up to one year from the intervention. Our findings show that after endovascular repair, in the analysed subject: (1) late aortic geometric modification persists not only in the stented segment, but in the whole thoracic aorta, with changes in local aortic curvature and non-planarity (Figs. 2 and 3), as confirmed by the progressive reduction of the bending and twisting energy averaged along the aorta during the follow up (Table 1) and the progressive re-establishment of more physiological cross-sectional areas (Fig. 4); (2) the aortic hemodynamics progressively turn back to more physiological flow patterns (Fig. 5), even if the physiological intravascular helical blood flow structures have still not been re-established after one year (Fig. 6); (3) at the ascending aorta the remodelling has not clear beneficial effects in reducing the luminal surface exposed to low and oscillatory WSS (Figs. 7 and 8) and the same holds for the associated flow shaping occurring between the stent-graft implantation and one year follow up; (4) in the stented segment near-wall low velocity regions (corresponding to low TAWSS, Fig. 7) are still present in CASE B, suggesting that risk of thrombosis inside the graft still persist; (5) as a consequence of stent-graft implantation, the presence of a stenosis in the descending aorta is only partially solved after one year, indicating that its presence could still be the source of secondary complications. Furthermore, the bird beak configuration is still present one year after surgery and its effect on the largest scales of motion still persists (CASE B).

There are several limitations that could weakens the findings of this study. First of all, the use of the same inflow boundary condition, which is specific of CASE B, also for CASE A, being phase-contrast MRI data not available immediately after the stent-graft implantation. As this could be a major limitation for this study, here we evaluated the sensitivity of the aortic hemodynamics immediately after implantation (CASE A) with respect to changes in input flow rate waveform shapes and inlet flow rate mean value. In detail, (1) a flow rate waveform previously measured at the ascending aorta [25], and (2) flow rate waveforms with average values equal to ±10% of the average flow rate measured at one year from implantation (CASE B) were prescribed at the inflow section of CASE A. However, our results showed that the near-wall hemodynamics of CASE A is not markedly affected by different flow rate waveforms shape and average values imposed at the inflow section, the WSS-based descriptors maintaining unchanged patterns at the luminal surface (data not shown). Moreover, no turbulence model was applied in this study, although transitional/turbulent flow regime may develop along the cardiac cycle. However, the reliability and generality of our findings is guaranteed, as the presented results are relative to the largest scale of motion [26]. Further investigation is needed about the effects of turbulence on energy dissipation and cardiac overload (in particular at the stenosis level and in the region of the “bird beak”, where flow instabilities might be present).
Other limitations could affect our findings. The fact that flow rate measured data used as conditions at the ascending aorta inflow boundary are defective [25] and have been arbitrarily completed by the assumption of a flat inlet profile in combination with an inlet flow extension may affect the final results and this nonlinearly combines with the assumptions and parameter uncertainty on outflow boundary conditions [44], blood rheology [45], the distensibility of the aortic wall [8] (even if it is worth noting that the presence of the stent-graft is expected to make the aorta stiffer [37]), the reconstruction of the anatomic models. Altogether these assumptions could bias the results in an overall significant way, but they do not limit the generality of the approach herein proposed, which can be made more and more patient-specific resorting to more mathematically sound data assimilation methods [46,47] and integrating further information from clinical imaging (e.g., measured three-dimensional phase velocity profiles at inflow boundaries [16,25] and measured wall distensibility [8]).

In conclusion, the findings of this study clearly show that combining vascular imaging of the thoracic aorta and multiscale computational hemodynamics is a promising reliable patient-specific tool, which could improve TEVAR clinical understanding, management and follow-up.

Acknowledgments

The authors acknowledge the computational resources provided by the project ‘Patient Specific Computational Analysis of Aortic hemodynamics over Large data sets [PASCA2L],’ LISA (Interdisciplinary Laboratory for Advanced Simulation) Action (Region Lombardy and CINECA consortium, Italy).

Moreover, DG and UM were supported by a personnel award from Joint Project for the Internationalization of Research 2014 from Compagnia di San Paolo Foundation and Politecnico di Torino. FA, MC, AL, SM, AV, AR were partially supported by the Cariplo Foundation through the iCardioCloud Project. FA, MC, SM, AR were partially supported by the European Research Council through the F7P Ideas Starting Grant (grant no. 259 229) ISOBIO - Isogeometric Methods for Biomechanics. This support is gratefully acknowledged. The provision of image data and their clinical interpretation by Prof. S. Trimarchi (MD) and Dr. F. Secchi (IRCCS Policlinico San Donato, Milan Italy) is gratefully acknowledged.

References

