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Abstract. In this paper we introduce a 3D phenomenological model for shape
memory behavior, accounting for: martensite reorientation, asymmetric re-

sponse of the material to tension/compression, different kinetics between for-

ward and reverse phase transformation. We combine two modeling approaches
using scalar and tensorial internal variables. Indeed, we use volume proportions

of different configurations of the crystal lattice (austenite and two variants of
martensite) as scalar internal variables and the preferred direction of stress-

induced martensite as tensorial internal variable. Then, we derive evolution

equations by a generalization of the principle of virtual powers, including micro-
forces and micromovements responsible for phase transformations. In addition,

we prescribe an evolution law for phase proportions ensuring different kinetics

during forward and reverse transformation of the oriented martensite.

1. Introduction. In the last years shape memory alloys (SMAs) have been deeply
investigated, from the point of view of modeling, analysis, and computation. In-
deed, these materials present many important industrial applications (for example
to aeronautical, biomedical, structural, and earthquake engineering) due to their
characteristic of superelasticity and shape memory effect.

It is known that the shape memory effect is the consequence of a (reversible)
martensitic phase transformation between different configurations of the crystal
lattice in the alloy: from a high symmetric phase, austenite, to a lower symmetric
configuration, martensite. Austenite is a solid phase (at high temperature) which
can transform in martensite by means of a shearing mechanism. When trans-
formation comes from thermal actions (lowering the temperature) the result is a
multi-direction martensite, in which variants compensate each other and there is
no resulting macroscopic deformation. On the contrary, when transformation is ob-
tained by loading, oriented martensite is formed in the stress direction, exhibiting
a macroscopic deformation.

In particular, the research have been developed towards the aim of finding a
flexible phenomenological model. Some reliable models have been proposed to pre-
dict the response of such materials. Among the others, we focus on two models
developed in the framework of phase transitions.
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The first, proposed by Frémond (cf., e.g., [7] and some generalizations [4], [5]),
describes the behavior of shape memory in terms of (local) volume proportions of
different configurations of the crystal lattice. More precisely, the austenite and
two variants of martensite are taken into account. Note that the average behavior
of different configurations is considered as the behavior of the equivalent single
variant. The resulting model is able to describe phase transformation between
different configurations. However, the model is obtained assuming that the direction
of the transformation strain (associated to the detwinned martensite) is known.

The second model we are considering has been proposed in [10] and then studied
in [2], and it assumes to deal with only one tensorial internal variable, i.e., the
transformation strain tensor, which describes the direction of martensite. In addi-
tion, such a model leads to a simple and robust algorithm, based on a plasticity-like
return map. Thanks to this property, the model has been used for implementation
within finite element codes, allowing the simulation of complex SMA devices. How-
ever, some secondary effects are not included in this second model, as scalar and
directional information are tightly interconnected.

Thus, one could wonder how to get a deeper description of micro-phenomena,
possibly combining the main features of the two different approaches. Accordingly,
the purpose of this paper is to combine the two cited theories, describing secondary
effects in the phase transitions as well as directional information for the transfor-
mation strain. Thus, both scalar and tensorial internal variables are introduced,
accounting for the phase proportions (assuming that in each point the phases may
coexist with different proportions) and for the orientation of the transformation
strain associated to the detwinned martensite. We consider both proportion and
direction as internal variables and we write evolution equations for both of them.
We recall that an attempt in this direction has been performed in [1] and in this
respect the present model can be considered even as a further generalization, since
we account for different kinetics during forward and reverse phase transformations.
Moreover, we prescribe an evolution law to capture asymmetric response of the
material in tension-compression loading. In [3] a 1D model has been introduced
to describe this kind of phenomenon, using an asymmetric energy depending on a
tensorial variable. However, it seems hard to extend such a model to higher dimen-
sions. On the contrary, our approach (developing an asymmetric evolution theory
for phase proportions) can apply to any space dimension.

As far as the analytical treatment of the model, this part is not developed in the
present paper. However, let us point out that the resulting PDE system present
interesting features also from the point of the proof of the existence (and uniqueness)
of the solutions. Indeed, it combines strongly nonlinear equation with non-smooth
constraint on the internal variables, quadratic nonlinearities and, in particular, a
non-convex constraint on some tensorial variable.

2. The model. In this section we detail the derivation of the model. We mainly
refer to the approach proposed by Frémond to describe the behavior of a thermo-
mechanical system in terms of state and dissipative variables, as well as energy and
dissipation functionals (see [7]). The main idea consists in assuming that (micro-
scopic) phase transformations are due to micro-forces and micro-movements that
have to be included in the global energy balance of the system (i.e. generalizing
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the principle of virtual powers). In particular, the equations governing the evolu-
tion of internal variables are recovered as balance equations (as for the momentum
balance).

2.1. The state and dissipative variables. As it is known, SMA phase transfor-
mations are due to transitions occurring in the microstructure configuration between
austenite and twinned or detwinned martensite. In particular, detwinning manifests
itself mainly through a shear strain so that we introduce a symmetric and deviatoric
strain which appears in presence of the detwinned martensite. The (local) volume
proportions of austenite and martensite variants is represented by phase parameters

χA, χM , χS ∈ [0, 1], χA + χM + χS = 1. (1)

More precisely, χA stands for austenite, χM for twinned martensite, and χS for
detwinned martensite. Due to the internal constraint (1) on the phase proportions
(coming from their physical meaning), we can restrict ourselves to consider just two
independent phase variables (χM , χS) letting

χA = 1− χM − χS ,

where

0 ≤ χM , χS ≤ 1, χM + χS ≤ 1.

Furthermore, dtr is the direction of the deviatoric strain tensor associated to the
detwinned martensite with ‖dtr‖ = ξs (ξs is the maximum amount for the detwinned
martensite). Indeed, the deviatoric strain for detwinned martensite is given by
χSd

tr. Then, θ is the absolute temperature, ε(u) the (symmetric) linearized strain
tensor (u is the vector of small displacements as we restrict ourselves to small
deformations).

Finally, let us use the notation εe for the elastic component of the strain, so that
it results

ε = εe + χSd
tr.

Hence, the corresponding deviatoric strain e is

e := ε− 1

3
tr (ε)I

I being the identity matrix and tr (·) the trace operator. If σ is the Cauchy stress
tensor, the deviatoric stress tensor S is

S := σ − 1

3
tr (σ)I = σ − σmI.

As far as evolution, this is described by dissipative variables χMt, χSt, d
tr
t , and ∇θ.

These variables are in particular related to micro-velocities in the phase transfor-
mation.

Remark 1. Let us comment about the choice of state variables. The main idea
consists in distinguishing between the norm and the direction of the inelastic strain.
In this way, we are able to describe the presence of a product phase, to which a
homogenized strain is associated, and a parent phase, in which it is active only the
elastic strain. However, in the parent phase, we can also distinguish between the
presence of twinned martensite and austenite. Thus, we get a more complex and,
at the same time, more flexible description of the phenomenon with respect to the
Souza and Frémond models (cf. [7], [10]).
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2.2. The energy and dissipation functionals. We introduce the following free
energy functional (depending on state variables) as a combination of the energies
associated to the single variants (combined with suitable proportions) and by an
interaction energy, accounting also for internal constraints

Ψ(ε,dtr, χM , χS , θ) = Ψel + Ψid + Ψch + Ψv (2)

where

Ψel =

(
λ

2
+
µ

3

)
(tr ε)2 + µ‖e− χSdtr‖2 (3)

Ψid = cs [(θ − θ0)− θ log θ]

Ψch = (1− χM − χS)hA(θ) + χMhM (θ) + χShS(θ) + hd(θ) : dtr

Ψv = IK(χM , χS) + Iξs(‖dtr‖) + Ψint(χM , χS).

Here cs > 0 is the specific heat, θ0 > 0 a critical phase transition temperature, λ
and µ are the Lamé constants; hA, hS , hM ,hd are smooth thermal functions whose
regularity will be specified later on (at least to ensure compatibility with thermo-
dynamics). The function IK is the indicator function of the convex set K

K := {(χM , χS) ∈ R2 : 0 ≤ χM , χS ≤ 1, χM + χS ≤ 1},
i.e. it is IK(χM , χS) = 0 if (χM , χS) ∈ K, while IK(χM , χS) = +∞ otherwise (cf.
[7]). The function Iξs forces ‖dtr‖ = ξs. Indeed, it is Iξs(‖dtr‖) = 0 if ‖dtr‖ = ξs
and it is +∞ otherwise. Ψint is a (sufficiently) smooth function accounting for
interaction energy. As a possible choice for the interaction energy Ψint, we could
simply consider

Ψint(χM , χS) = CMSχMχS + (CAMχM + CASχS)(1− χM − χS) (4)

+CAMSχMχS(1− χM − χS),

where CMS , CAM , CAS , CAMS are positive constants.

Remark 2. The choice of the free energy is related to the models by Frémond and
Souza, here extended to the novelty of our approach. In particular, let us comment
about the choice of Ψch in which thermal actions depend on thermal functions acting
in the different configurations of the lattice (comparing with Souza’s model in [10]
the reader may refer to the term involving τM , and comparing with Frémond’s
model in [7] to the term related to the latent heat). The interaction energy Ψint

can be seen as a sort of configurational energy associated with the coherency of the
phases. It has been chosen in the form of a quadratic polynomial for the sake of
simplicity. A similar choice can be found, e.g., in [5].

Remark 3. Note that for (χM , χS) we have introduced a convex constraint forcing
(χM , χS) ∈ K. The constraint on dtr is convex w.r.t. to its norm as it is ‖dtr‖ = ξs,
but not w.r.t. dtr. This point will represent a difficulty in solving the problem from
the point of view of the existence of a solution (note that analogous difficulties arise
in some liquid crystals models). For this reason, some suitable approximation of
this constraint should be introduced to get the required existence result.

Now, let us introduce the pseudo-potential of dissipation, which is a positive
convex functional depending on dissipative variables, vanishing for vanishing dissi-
pation (cf. [9]). We have

φ(χMt, χSt,d
tr
t ,∇θ) = |χMt|+ φS(χS ,σ, χSt) + χS‖dtrt ‖+

1

2θ
|∇θ|2. (5)
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Note that, φ is considered to possibly ensure an asymmetric behavior in tension
and compression and for forward and backward transformation. This is due to the
choice of the function φS (noting that it possibly depends on the stress and χS).
Indeed, this choice generalizes the classical situation for rate-independent systems,
where it is

φS(χS ,σ, χSt) = |χSt|. (6)

Actually, φS is required to be rate independent with respect to χSt. Hence, ac-
counting for a possible dependence in the evolution on the stress (e.g., for tension-
compression behavior) and on the volume of already detwinned martensite, we get
as a further possible example

φS(χS ,σ, χSt) = d(χS ,σ)(χSt)
+ + |χSt| (7)

where (f)+ = f if f ≥ 0 and (f)+ = 0 if f ≤ 0 and d is a sufficiently smooth
function. From now on we deal in particular with (7).

Remark 4. Note that we could refine the model, e.g. adding in (7) a term as

d̂(χS ,σ)(χSt)
− for decreasing evolution of the product phase.

2.3. The equations. We consider a smooth bounded domain Ω ⊆ R3 with Γ = ∂Ω
split into Γ1 ∪ Γ2 (with Γi disjoint subset, Γ1 with strictly positive measure).

We assume that a generalized version of the principle of virtual powers holds,
accounting for internal microforces responsible for phase transitions (see [7]). Thus,
the first principle of thermodynamics reads as follows

et + div q = r + σ : εt +BMχMt +BSχSt +B : dtrt in Ω, (8)

the right hand side being the power of interior forces and the heat source r. Here, e
is the internal energy, q the heat flux, (BM , BS) and B internal (microscopic) forces
responsible for the phase transformation (i.e. the evolution of internal variables).
The heat flux satisfies boundary condition (h is a known flux through the boundary)

q · n = h on Γ. (9)

Hence, by the principle of virtual powers we get the quasi-static momentum
balance

− div σ = f in Ω, (10)

with boundary condition

u = 0 on Γ1, (11)

σn = t on Γ2, (12)

f being a volume force, while t is a traction applied on a part of the boundary.
Analogously, the evolution of the phases depends on internal forces which are

included in the energy balance of the system. Thus, we get two balance equations,
one for the evolution of the phase proportions (related to (BM , BS)) and one for
the evolution of the tensor dtr (related to B), i.e.

(BM , BS) = (0, 0) in Ω, (13)

B = 0 in Ω. (14)
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2.4. The constitutive relations. We need to prescribe constitutive relations for
the involved physical quantities. The internal energy is

e = Ψ + θη

where the entropy η is prescribed by

η = −∂Ψ

∂θ
= cs log θ − h′A(θ)(1− χM − χS) (15)

− h′M (θ)χM − h′S(θ)χS − h′d(θ) : dtr.

The Cauchy stress tensor is
σ = S + σmI,

with

σm =
∂Ψ

∂tr ε
=

(
λ+

2

3
µ

)
tr ε,

and

S =
∂Ψ

∂e
= 2µ(e− χSdtr). (16)

Hence, we get

(BM , BS) = (−BndM ,−BndS ) + (BdM , B
d
S) =

∂Ψ

∂(χM , χS)
+

∂φ

∂(χMt, χSt)
. (17)

More precisely, letting

s(x) =
x

|x|
if x 6= 0, s(0) = [−1, 1],

and
H(x) = 1 if x > 0, H(x) = 0 if x < 0, H(0) = [0, 1]

there holds

BndM = hA(θ)− hM (θ)− ∂Ψint

∂χM
− γM , (18)

BdM = s(χMt),

and (choosing φS as in (7))

BndS = hA(θ)− hS(θ)− ∂Ψint

∂χS
+ 2µ(e− χSdtr) : dtr − γS , (19)

BdS =
∂φS
∂χSt

= s(χSt) + d(χS ,σ)H(χSt)

with
(γM , γS) ∈ ∂IK(χM , χS). (20)

Finally, we consider

B = −Bnd +Bd =
∂Ψ

∂dtr
+

∂φ

∂dtrt
(21)

where

Bnd = 2µχS(e− χSdtr)− hd(θ)− γdtr (22)

Bd = χSs(d
tr
t )

using the notation

s(dtrt ) =
dtrt
‖dtrt ‖

if dtrt 6= 0, s(0) = {w : ‖w‖ ≤ 1}.
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and letting

γ ∈ 1

ξs
∂Iξs(‖dtr‖) = ∂Iξs(‖dtr‖).

Note that the constraint on ‖dtr‖ is not convex w.r.t. to dtr, which represents a
difficulty from a mathematical point of view (see Remark 3).

As far as the heat flux, we assume (Fourier law)

q = −θ ∂Φ

∂∇θ
= −∇θ. (23)

3. The PDE system.

3.1. The first principle. Combining constitutive relations with the balance laws,
we get the PDE system we deal with. First let us discuss the energy balance,
from which we show that the model is thermodynamically consistent. The equation
governing the evolution of the temperature is recovered from (8). After using the
chain rule and by the constitutive relations, we get

θ(ηt + div
q

θ
)− r =

∂Φ

∂(χMt, χSt)
· (χMt, χSt) +

∂Φ

∂dtrt
: dtrt +

∂Φ

∂∇θ
· ∇θ ≥ 0 (24)

from which the second principle of thermodynamics follows, once θ > 0 (it is the
absolute temperature). Note in particular that we have strongly exploited the fact
that ∂Φ turns out to be a maximal monotone operator with 0 ∈ ∂Φ(0). The
resulting equation is

θt(cs − θ(h′′M (θ)χM + h′′S(θ)χS + h′′A(θ)(1− χM − χS) + hd
′′(θ) : dtr)) (25)

+ θh′A(θ)(χM + χS)t − θh′M (θ)χMt − θh′S(θ)χSt

− θhd′(θ) : dtrt −∆θ = |χMt|+ |χSt|+ d(χS ,σ)(χSt)
+ + χS‖dtrt ‖+ r.

In particular, we have to assume that hA, hM , hS ,hd are smooth functions and

(cs − θ(h′′M (θ)χM + h′′S(θ)χS + h′′A(θ)(1− χM − χS) + hd
′′(θ) : dtr)) ≥ C > 0.

Remark 5. This assumption is required to preserve parabolicity of the evolution
equation (25). This assumption seems physically consistent and it is deeply used
in the literature for this kind of problems (see [7]). Mainly, it is required that
hA, hM , hS ,hd are in W 2,∞, and that their norms and |h′A(ξ)ξ| + |h′′M (ξ)ξ| is uni-
formly bounded by some sufficiently small constant (and the same for hM , hS ,hd).
This can be read as a smooth truncation of the standard choice for this kind of
functions of type L/θ∗(θ− θ∗) (L being the latent heat and θ∗ the phase transition
temperature).

3.2. The evolution. Combining constitutive relations with momentum balance,
it follows

− div ((λ+
2

3
µ)tr εI + 2µ(e− χSdtr)) = f , (26)

combined with (11), (12). Then, by definition of BM and BS , the evolution equa-
tions for (χMt, χSt) are written as

s(χMt) + (hM (θ)− hA(θ)) +
∂Ψint

∂χM
+ γM = 0 (27)
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and

s(χSt) + d(χS ,σ)H(χSt) + (hS(θ)− hA(θ))− 2µ(e− χSdtr) : dtr (28)

+
∂Ψint

∂χS
+ γS = 0

where

(γM , γS) ∈ ∂IK(χM , χS).

Note that ∂IK(χM , χS) = (0, 0) if (χM , χS) belongs to the interior of K, while it is
given by the normal cone to the boundary if (χM , χS) ∈ ∂K.

Finally, the evolution equation for dtr is given by

χSs(dtrt )− 2µχS(e− χSdtr) + hd(θ) + γdtr = 0, (29)

γ ∈ ∂Iξs(‖dtr‖).

Remark 6. Note that the coefficient χS of the evolution term s(dtrt ) ensures that in
the absence of detwinned martensite there is no dissipative contributions involving
dtr.

3.3. An equivalent formulation. Let us now introduce (BM and BS are defined
as in (18) and (19))

FM (BndM ) = |BndM | −RM (30)

FS(BndS ) = |BndS | −R(BndS , χS ,σ) (31)

where

R(BndS , χS ,σ) = RS if BndS < 0

and R(BndS , χS ,σ) = RS + d(χS ,σ) if BndS ≥ 0.

Here the positive constant RM , RS are related to the coefficient of s(·) in the
evolution equations for the phase parameters (in the previous paragraph it was
RM = RS = 1) Then, we can rewrite the evolution of the phases (27) and (28) as
follows

χMt = ζM
BndM
|BndM |

, (32)

χSt = ζS
BndS
|BndS |

, (33)

ζiFi = 0 i = M,S, (34)

Fi(B
nd
i ) ≤ 0, i = M,S. (35)

Note that Fi play the role of yield functions (see, e.g., [8]).
Analogously we may introduce

Fd = ‖Bnd‖ − χS
letting

dtrt = ζd
Bnd

‖Bnd‖
,

with

ζdFd = 0, Fd ≤ 0.
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4. Some examples. In the following we explore the model performances limiting
the discussion only to the case of a proportional loading state, i.e., neglecting the
reorientation process. Accordingly, to simplify the discussion, we set hd(θ) = 0, dtr

in the same direction of S (and e), assuming also dtrt = 0. Under these simplifying
positions, we may set (see (16))

Bnd

||Bnd||
=

e

||e||
=

dtr

||dtr||
, (36)

and

||S|| = 2µ(||e|| − χS). (37)

Moreover, we distinguish between two different possible situations, one in which
we consider only evolution of the stress-induced martensite and one in which we
consider only evolution of the temperature-induced martensite, as discussed in the
following. For both problems we start from a material completely in austenite (i.e.,
χS = χM = 0).

4.1. Case 1: Temperature-induced effect. For this problem we assume to start
from σ = 0 and to vary only the temperature. Accordingly, only a variation of χM
can be produced.

The problem is governed by the following set of equations (see (18)):

BndM = hA(θ)− hM (θ)− ∂Ψint

∂χM
− γM ,

FM (BndM ) = |BndM | − 1

χMt = ζM
BndM
|BndM |

,

ζMFM = 0 FM (BndM ) ≤ 0.

(38)

Here, we let hA(θ)−hM (θ) = −C(θ−θ0), θ0 being a characteristic intrinsic temper-
ature at which the two ideal phases are in equilibrium and C a material parameter.
Then, let us take RM = 1. We assume to first properly cool and then heat the
material (see Figure 1).

In Figures 2-4 we report the evolution of the thermodynamic force BndM versus the
temperature θ, of the temperature-induced martensite χS versus the temperature
θ, of the quantity γM versus the the temperature θ.

It can be observed that during cooling the model is able to reproduce a process in
which the multi-variant martensite is produced and then during heating a process
in which the multi-variant martensite is progressively extinguished. The forward
and reverse phase transformations are perfectly symmetric.

4.2. Case 2: Stress-induced effect. For this problem we assume to start from
σ = 0 and to vary only the stress. Accordingly, only a variation of χS can be
produced.



286 FERDINANDO AURICCHIO AND ELENA BONETTI

The problem is governed by the following set of equations ((19)):

BndS = hA(θ)− hS(θ)− ∂Ψint

∂χS
+ 2µ(||e|| − χS)− γS ,

FS(BndS ) = |BndS | −R(BndS , χS ,σ)

χSt = ζS
BndS
|BndS |

,

ζSFS = 0 FS(BndS ) ≤ 0.

(39)

where (letting (7) holds)

R(BndS , χS ,σ) = RS if BndS < 0 and

R(BndS , χS ,σ) = RS + d(χS ,σ) if BndS ≥ 0.
(40)

Note that, once more we let hA(θ)− hM (θ) = −C(θ − θ0), θ0.
We assume to first properly load and then unload the material (see Figure 5).
In Figures 6-9 we report the evolution of the thermodynamic force BndS versus

the applied stress σ, of the stress-induced martensite χS versus the applied stress
σ, of the quantity γS versus the applied stress σ, of the applied stress σ versus the
strain ε.

Let us point out that the dependency of RS from loading conditions is simplified
indicating in the figures only RS(1) and RS(2), indicating the initial and final values
associated with the forward phase transformation, and RS(3), indicating the initial
and final values associated with the reverse phase transformation.

It can be observed that during loading the model is able to reproduce a process
in which the single-variant martensite is produced and then during unloading a
process in which the single-variant martensite is progressively extinguished. The
forward and reverse phase transformation are unsymmetric.

Figure 1. Temperature-induced test. Variation of the stress σ
versus the temperature θ.

Acknowledgments. The authors are grateful to Giulia Scalet for her collaboration
in the elaboration of the results presented in the section Examples reported at the
end of the present paper.



A NEW “FLEXIBLE” 3D MACROSCOPIC MODEL FOR SHAPE MEMORY ALLOYS 287

Figure 2. Temperature-induced test. Variation of the thermody-
namic force BndM versus the temperature θ.

Figure 3. Temperature-induced test. Variation of the
temperature-induced martensite χM versus the temperature θ.
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Figure 4. Temperature-induced test. Variation of the quantity
γM versus the the temperature θ.

Figure 5. Stress-induced test. Variation of the stress σ versus the
temperature θ.
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Figure 6. Stress-induced test. Variation of the thermodynamic
force BndS versus the applied stress σ.

Figure 7. Stress-induced test. Variation of the stress-induced
martensite χS versus the applied stress σ.
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Figure 8. Stress-induced test. Variation of the quantity γS versus
the applied stress σ.

Figure 9. Stress-induced test. Variation of the applied stress σ
versus the strain ε.
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